IAR J-Link and IAR J-Trace

User Guide

JTAG Emulators for
ARM Cores

©IAR

J-Link/)-TraceARM-5 SYSTEMS




COPYRIGHT NOTICE
© 2006-2011 TAR Systems AB.

No part of this document may be reproduced without the prior written consent of IAR
Systems AB. The software described in this document is furnished under a license and
may only be used or copied in accordance with the terms of such a license.

DISCLAIMER

The information in this document is subject to change without notice and does not
represent a commitment on any part of IAR Systems. While the information contained
herein is assumed to be accurate, IAR Systems assumes no responsibility for any errors
or omissions.

In no event shall IAR Systems, its employees, its contractors, or the authors of this
document be liable for special, direct, indirect, or consequential damage, losses, costs,
charges, claims, demands, claim for lost profits, fees, or expenses of any nature or kind.

TRADEMARKS

IAR Systems, IAR Embedded Workbench, C-SPY, visualSTATE, The Code to Success,
IAR KickStart Kit, IAR, and the logotype of IAR Systems are trademarks or registered
trademarks owned by IAR Systems AB. J-Link and J-Trace are trademarks licensed to
IAR Systems AB.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Intel and Pentium are registered trademarks and XScale a trademark of Intel
Corporation.

ARM and Thumb are registered trademarks of Advanced RISC Machines Ltd.

All other product names are trademarks or registered trademarks of their respective
owners.

EDITION NOTICE

Fifth edition: October 2011

Part number: J-Link/J-TraceARM-5
Internal reference: V4.36, IMAE



Preface

Welcome to the IAR J-Link and IAR J-Trace User Guide for JTAG Emulators for ARM Cores.

About this guide

This guide provides an overview over the major features of J-Link and J-Trace, gives you some background information
about JTAG, ARM and Tracing in general and describes J-Link and J-Trace related software packages. Finally, the
chapter Support and FAQs, page 135 helps to troubleshoot common problems.

For simplicity, we will refer to J-Link ARM as J-Link in this manual.

For simplicity, we will refer to J-Link ARM Pro as J-Link Pro in this manual.

TYPOGRAPHIC CONVENTIONS

This manual uses the following typographic conventions:

Style Used for

Keyword Text that you enter at the command-prompt or that appears on the display (that is system functions,
file- or pathnames).

Reference Reference to chapters, tables and figures or other documents.

GUIElement Buttons, dialog boxes, menu names, menu commands.

Table 1: Typographic conventions

Literature and references

To gain deeper understanding of technical details, see:

Reference Title Comments
[ETM] Embedded Trace Macrocell™ Architecture This document defines the ETM standard, including signal
Specification, ARM IHI 0014 protocol and physical interface.

It is publicly available from ARM (www.arm.com).

Table 2: Literature and references

J-Link_J-TraceARM-5



4

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-5



Table of Contents

Preface ... 3
ADoUL this GUILE .........ooiii ettt sttt et b e et e ettt e e eae 3
TypographiC CONVENTIONS ........ccuiiiiiriiiiiiiiieiteteete ettt st ettt ae st ettt e saeesnesaesae e neeanenreas 3

Literature and FefErE@NCES ............c.ccooiiiiiiiiiiii ettt ettt sttt 3
INEFOAUCTION ..ot 11
REQUIFEMIENTES ...t b ettt h et e b et e s at et e sh e e bt eae e teeb e et e eseeebeenteeseenes 11
SUPPOIEEd OS ..ottt ettt b bbb ettt ettt b e bt bt b b 11
J-LINK / J-Trace mModels ..ottt st 11
MOAE] COMPATISON ....evientiiieie ettt ettt ettt e bt et e et e bt et e stesate bt eatesbesseeabeemeesbeestebeeneenteeseeeesaeensesaean 12

J-LANK ARM Lottt bbbttt et et b e she bt b eae s 12

JoLNK UTEEA oottt ettt ettt et e s bt et e sb e et e s beeaeeeb e es b e beeaeenteeseenaeeneenseenean 15

J-LANK ARM LI .ottt sttt ettt e be bt e bbbt eb e b e 16

J-LiNK Lite COTEX-IM ...c.uiiiiiiieiieiieiiete ettt ettt st et b et s h et s b et e e bt et e eb e et e eaeenteseeenaesaeensesnean 17

J-TTACE ARM Lottt ettt et et st sttt b e ettt a et sa e et naeeanen 18

J-Trace Or COTtEX-IM3 ...ttt ettt ettt et st e e e b e et et e eb et eeaeeteeseenbesaeenaeeaean 19

Common features of the J-Link product family ... 20
SUPPOFLEd CPU COFES ...ttt sttt e a et ettt ebt et e be s bt ebb e beesbenbeeas 21
Built-in intelligence for supported CPU-COFES ............ccoiiiiiiiiiiii e 22
Intelligence in the J-LinK fIrmMWATE ........ccoeciiiiiiiriiiiiiieeie ettt ettt e e 22

Intelligence on the PC-Side (DLL) ...coccoiiiiiiiiiieiee ettt sae e 22

Firmware intelligence per MOAE] .........coccioviiiiiiiniiiiiieieee ettt ettt ettt et esaesbeesaaeeas 23

LECENSING ..o 25
INErOAUCHION ..ottt st et b et s b et sb et sbe et sbeetesaeenaesueen 25
Software components requiring @ lICENSE ..............ccoiiiiiiiiiiiieee e 25
LICENSE LYPES ...ttt ns 25
BUIIE-1 TICEMSE .eenveiieitiiieiieitet ettt ettt et sb et st e st sbt et s bt et et e e bt e nbe et e nbeebeen 26

KEY-DASEA LICEIISE .....cnveiiiniiiiiiieiicieeiee ettt ettt sttt e ae s e st en e see e st eneeanen 26
DeVICe-DASEA LICENSE ....ouveeuveiieiiiiieierieetert ettt ettt et st e e st e st sbt et s bt et sbe st enae et e sbeenees 27

Legal use of SEGGER J-Link software ... 29
PrOAUCES ...ttt st ettt e b bbbt et sb et sbe e et saeenaesaeenesueen 30
JoLUNK et b bbbt bt a et a e ae bt bt e h ek et e et et et entebeebeebeebesaea 30

JoLANK UTEEA ettt ettt et et s ettt b e ea ettt et esaesaeeneennesueen 30

JoTITACE ettt ettt ettt et s bt et e bt st e bt sat e e bt e e at e e b e e e abe e beesaneenee e 31

J-TTaCe FOT COTIEX-IM ..ouiiiiiiiiiiice ettt ettt et et st st b ettt esa e ebee e saeenneeunen 31

LAR JoLINI LITE ...ttt ettt et et e bt ettt et e s e b en s et e e et e st en e eneeneeseeneeneeneeneens 31
JLINK OBS ...ttt ettt b e b bt et s ettt s e e st b e s e s e b e b et enbense st enaeseeneeaeeteesene 31
HIEGAl CHONES ......c.oiiiiii ettt ettt b e st s bttt et et e e et eaeesa e eatentesaeenaesueen 32
J-Link and J-Trace related SOftwWare ... 33
J-LINK related SOFEWAKE ...........c.oooiiiiieieceeee ettt ettt et e st e et e s b e esbeesabeesbeenseesrseenseenns 33

J-Link software and documentation PaACKAZE .........ccceeeeruerieriirieieiieriert ettt s 33



J-Link software and documentation package in detail .....................co.cccnii 33

J-Link Commander (Command JINE tOO0]) .........uoeiiviiuiiiiieiiiiiee et eeire e eerareeeeeesareeeeeeeanes 34
J-Link STR91x Commander (Command 1ine tOO0]) .........ccccueeriiiireiiieiiieeieeeriee e esree e eenee s 34
J-Link STM32 Commander (Command Jine tOO0]) ..........ccccuiiiiiiiieiiiiiiiie ettt e 36
J-MeEm MEMOTY VIEBWET .....ooouiiiiiiiiiiieieieee ettt et st st sae e ae e saeennes 36
J-Flash ARM (Program flash memory via JTAG) .....ccccoceeviiririiiniiniiiieieneeeseeeeeteeeeee et 36
Using the J-LINKARMLAIL ...ttt 37
What is the JLINKARM.AIL? ... 37
UpPdating the DL ...o.iiiiiee ettt sttt s b et s bt et eb et eeaeeteeaeentesaeenaeeaees 37
Determining the version of JLINKARM.AIL ....c...oooiiiiiiiiiiiiieiieeiecie ettt e 38
Determining which DLL is used by @ PrOZIam .......cccoeeueiriririnenenenieieieteieeesie e sseseeseeeeneeneeneenens 39
SBEUP ettt R SRR 41
Installing the J-Link ARM ..ottt ettt st 41
SELUP PIOCEAUIR ...c.eentieiiiiiiiiieitete ettt ettt b ettt be st sb et e s bt et e s bt e st e sbeentesbeenaesaeenaesneen 41
Setting up the USB iNterface ..ottt ettt 41
Verifying correct driver INStAIIAtION ......c.eevuiiriiirieiiieiie ettt ettt ettt ettt e sabe e beesabesbeesaeebee e 41
Uninstalling the J-Link USB dIiVeT .....cccoiiiiiiiiiiiieeeeee et 43
J-LINK USB identification ..ottt sttt sttt st st 44
Connecting to different J-Links connected to the same host PC via USB ........cccccoviniiiinnnincennene. 45
Working with J-Link and J-Trace ...t 47
Connecting the target SYSteM ............cocociiiiiiiiiiceetet ettt ettt sae 47
POWET-01 SEQUETICE ....eouvieiiieiiieiieett ettt ettt ettt st et te st e e bt e sat e s bt e sbtesabeenbtesabeeabeesssesaseesseesnseesnenas 47
Verifying target devVice CONMMECTION ......covuiiuiiiieriieieiietieie ettt et e sttt e sbe et e sbeestenbe et e et eseeseeeneesaeennas 47
PIODICINIS ..o et 47
INAICALONS ...ttt et ettt s a e bbbt ettt ettt st sb e ae 47
IMAIN INAICALOT ..eneieiiiiiieeiteete ettt ettt sttt ettt sttt e st e bt e sut e s bt e sabeeabeebteeabeeabeesatesabesabeesaneennaenas 47

INPUL TNAICALOT ..ttt ettt ettt st st eb e bt et eb et sae et sbeeeesaeenbeeneen 48
OULPUL TNAICALOT .ttt ettt st st s s e e ane st e bt esnesaeesnesaeenneeanes 49
JTAG INEEIFACE ...ttt ettt e et e st e e s beesteeeabeesstessbeenbaessseenseessseenseesseesnsasnseenns 49
Multiple devices in the SCAn ChAIN ........ccccoiiiiiiiiiiiiieieeeece e 50
Configuration dialog DOXES .....ccueruieriiriiiriiriieeitereet ettt ettt st sttt et st e et e e saeenaesaeen 50
Determining values for scan chain configuration ............ccccoceveriiiiniiiinienieneeeec e 52

TJTAG SPEEA ...ttt et ettt et st st bt e b bt et eb et eat et saeeaesaeenbeenees 53

SWD QNEEIFACE ...ttt bttt ettt b s bt s bt bbb st et a et et sbeebesbenae 53
SWD SPEEA ...ttt ettt ettt st et esat e bt e s it e e bt e st e e bt e s ab e e bt e sab e e bt e sateeabeesheeebeeneenas 53

SWO ettt et sttt sttt ettt h e bbb e bttt ettt st eae b e 53
Multi-core debUggIng ...ttt 54
How multi-core debugging WOTKS ........cooceriirieiiiriinieienteeeeee ettt 55

Using multi-core debugging in detail ............cccooiiiiiiiiiiiiiiiiiieceee e e 56
Things you should be aWare Of ..........cccooiiiiriiiiiniiiie ettt s 57
Connecting multiple J-Links / J-Traces to your PC ..., 58
HOW d0€S 1t WOTK? ..ttt s st s e eae e 58
J-Link control panel ... s 59
TADS <. 59

RESEL SEFAtEGIES ..ottt ettt et ettt ettt e s et e st e e bt et e s bt e st e bt e s e ebeen e ne e 64
Strategies for ARM 7/ dEVICES ......c.coieiiriiiiiiieiiieie ettt st 64
Strategies fOr COrteX-IM EVICES .....ccueriiriiriiriirieeitirieete ettt st sttt bbbttt ettt eaeesaeenees 66

Using DCC for MEMOKY ACCESS ........ccoouiiiiiiiiieiiiciee ettt enens 67
WHRAL 1S TEQUITEAT ..ttt ettt ettt et st e b et e b e st e bt eae e et sbeenaesaeenaeeueen 68

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Table of Contents —e

Target DCC NANAIET .....c..ooiiiiiiiiiiiie ettt ettt et et st et e st e e bt e sabeenbeesabeebeenabesnbeenaeesares 68
Target DCC abort RANAIET .....cc.cooiiiiiiiiiiie ettt st 68
JLINK SCRIPL fIl@S ...ooooiiiiiiii ettt et st sttt ettt eae bt sae e e eaeen 68
Actions that can be CUStOMIZEM .........cciviriiriiiiiiiiicieieecteee et st 68

Script file APT fUNCHONS ..c..ooiiiiiiiiiiieieee ettt st e eee 69
Global DLL VArIables .....cc.ccucoiiiiiiiiiiiiiiiienieiciet ettt st 72
G1ODAL DLL CONSLANLS ...veeutieriieriieitieeiteesieesiteestee ettt et esite st esbtesate e bt e sabeebeesbteebeesbeesabeesseesaeesaseenseesanean 73

SCrIPt flE JANZUAZE ..ecuveeieniiiiiiieieteee ettt ettt ettt sttt ettt eae e 74
Executing J-Link SCIIPL fIlES ....c.oiiiiiiiiiiiiiei et 75
COMMEANG SEFINGS ..ottt ettt et b et b et s bt et sbe e et sbeebesaeenaesbeen 75
List of available COMMANGS ......cc.eouiiiiiiiiieiieeee ettt et ettt e sbesbeeaesanens 76

USING COMMEANG SIIINES ...veruvieiieeiiieitierteeieesteeieesiteeteestteseteesseessaeebeesabesateesateesseeseesaseesseesnsesnseenseesases 81
Switching off CPU clock during debug ... 82
Cache handling ...ttt sttt ettt st sae et e eanes 82
CaChE CONETEINCY ....oouiiiiiiiiiiiicec ettt s s s e 82

CaCRE CIEAN ATBA ....eeiieiiniieiitete ettt ettt e b e ettt e st e e bt e sbe e s bt e sbeesabe e baeeabeents 83

Cache handling Of ARMT7 COTES ....c.evtiriirieriirienieniteieeitente ettt ettt et ettt sbeetesbe e te bt eatesbeestesbenesanens 83

Cache handling 0f ARMO COIES .......ooieiiriiiiiiiieieieeteee ettt sttt s s 83

FIAsh dOWNIOAd ... 85
INErOAUCLION ..ottt ettt ettt sttt ettt sae e bt eaeesbeenaeseaennesanens 85
LECENSING ..ottt ettt et b e et sb et s bt et e bt et ebe et sbeentesaeeaeeueen 85
SUPPOrted dEVICES .........occioiiiiiiii et 85
SEEUP ettt b et e h e a e bt st a e e b e bt et bt e he et ehe et eae et saeeaeeueen 86
TAR Embedded WOrKDench .........cccoooiiiiiiiiiiiiiiii et e 86
J-LinK COMMEANAET ....eovuiiiiiiiiiiiiieiie ettt ettt ettt et s et e sat e e bt e sab e et e e sbbeebeenabesabeesaeesares 86
Setup for CFIlash ...ttt sttt st sbe e st enaeeaees 87
TAR Embedded WOTKDENCH ......cccuiiiiiiiiiiiiiiiitee ettt sttt s 87
J-LANK COMMANAET ..ottt et st e 89
Using the DLL flash loaders in custom applications .....................cccoiiiice 89
FIASh BreakpPOints ..o 91
INEFOAUCHION ...oiiiiiiiii ettt ettt st et sttt et st et et e bt ebesbeeae s 91
LECENSING ..ottt ettt et b e et bt et s bt et s bt et eb e et sbeenbesaeeaesaeen 91
24h flash breakpoint trial lICENSE ......c..ccuevieririiiririiniiieiceeet ettt ettt 92
SUPPOFLEd dEVICES ......cc.ooiiiiiiiii ettt ettt et et sttt e a e sae et st eaeennen 92
SOEUP ittt h e h et h et e h e e e bbbt e h e b e bt e bt e bt e h e et e bt et she et s it enteebeen 93
SELUP ettt sttt et h et et et et a e s ae e n et ne e h et e e s e neeaee 93
DEVICE SPECIfICS ..o 95
ANAIOG DIEVICES ......ooiiiiiiiiiii ettt et bttt sttt sttt b e 95
ADUCTEXX eventeeitenteeitenteete st ettt et sh et e bt et e ebtea bt ebe e et ebt e bt eatesaeebt e bt e s beabeeb b e bt et e ebeesteebeebesaeenbesbtenbesanens 95
ATIMEL ..ottt ettt ettt h bt bbbt bttt ettt ettt et et ebe e 96
ATOLSAMYT oot s 97
ATOTSAMO ettt ettt ettt et a bbb a ettt eae b 99
DISPGIOUP ..ottt ettt ettt et s bttt s bttt s a e e bt st s bt e s e bt e b e bt et e bttt sae et sae e e e eueen 99
EIMNDEr ..ottt e b sttt ettt ettt 99
ENErZY MICKO ..o 100
Freescale ... e 101
KNGS TAMILY ...ttt ettt et ettt e a et et e bt et e e b enaesaeenaesaean 102
UNTOCKINIE ettt ettt ettt ettt e bt et e sa bt e bt e s et e e bt e sabeeabeesabeenseesheeensesaseenssesasesnseenns 102
TLACIIIE ettt ettt ettt a et ettt e a et e h e et e a e e bt e a e e sbe e st e bt e ateabeese e bt enteebeeb e et e enteeaeentenneenean 102

J-Link_J-TraceARM-5 7



FEFON .ottt ettt ettt ettt s 103
LUMINArY MICPO ..ottt ettt ettt e e e bt et e st e st e e at et et esbeeneesaeenees 103
Unlocking LIM3SXXX AEVICES ..ecuveeruieruieriierieeiieniieittesitesteesitesteesitesteebeesaseesseesasesssaesssesseesssesssesnses 104

INDXP ettt ettt b e b sttt ettt eb e bbbt e et ettt ettt eaesae b 104
LPC ARMT7-DASEA AEVICES ...uveeurieiieriiiiiieniteeitesittete ettt st estte st ebtesateeabeesabesbeesatesbeeseesateesseesaseennes 105

Reset (CorteX-IM3 DAaSEA AEVICES) ..veiivrieeiiiiieeiiieecitee et et e et e e ete e eeta e eetaeeeetveeeeaaeeesavaeeetseeensaeeennnas 106

O ettt ettt b e bbbttt b ettt et oo st a e bt e bt e bbbttt et ettt ebe b e b nee 106
RENESAS ...t 107
SAMISUNG ...ttt ettt et ea et ea e e et e e et e ebeea e e ebe e st e ebeembesbeemt e bt em b e bt en b e bt entenaeeneenaeeaeas 107
SBENOOD ..ottt ettt sttt ettt ettt b et b bbb et et ettt et ene e ebe e 107

ST MICroelectroniCs ..........c..coiiiiiiiiii e ettt e 107
STROTX ettt sttt ettt ettt eb bt bt e b b a e et et eae b nre e 108
STMB2FT0X .ottt s sttt 109
Texas INSEFUMENLS .......c..coiiiiiiiiiiiiie ettt st sttt s s sa et eneeue b aeeuees 110
TOShiba ..o 110
Target interfaces and AdAPLErS ...t 113
20-pin JTAG/SWD CONNECLOL ......c..ooiiiiiiiiiiiieiieitcte ettt ettt ettt ettt et eae e bt st saeeneenaeeanes 113
PINOUL TOT JTAG ..ottt s et s st 113
PINOUL FOT SWD oottt ettt et e sbt e bt e s bt e st e e bt e sate e beesaneeabes 115
38-pin Mictor JTAG and Trace CONNECLOF ...........ccooiiiiiiiiniiiieieiieeeteeet ettt 116
Connecting the target DOArd ...........cccooiiiiiiiiiiiiieeeee et 117
PINOUL <ottt et s s s et 118
Assignment of trace information pins between ETM architecture Versions ...........ccccocceeeveenvennennen. 119

TLACE SIZNALS ..eviiieniieiieti ettt ettt et sttt s b et s bt et ebe et e sheeaesbeesbesbeenbeebnent 119
19-pin JTAG/SWD and Trace CONNECLOF ..ottt 120
TarZEt POWET SUPPLY .eeeuriiuiieriieiitieitieette sttt ettt et et e sbte et e e bee s bt e btesabeesbeesabeebaesabeenseesaseenseesaseenses 121

9-Pin JTAGISWD CONNECLOFL ........ooiiiiiiiiiieeee ettt ettt ettt e a et a et eae et e seesaeeseenaeeaees 121
AUAPLELS ...ttt sttt ettt e be bt et e et sheenaesae e nesaeens 122
Background infOrmMAation ...t 123
JTAG et a bbb st 123
Test aCCeSS POIT (TAP) ..ottt ettt sttt ee b eanens 123

DAta TEEISTETS .....eeuieiieiiiiieie ettt ettt ettt ettt et e bt et e st e sae e s e b e eane s bt eas e st eanesaeennesseennesnesunens 123
INSTIUCHION TEZISTET ..evviutiiiieiiitieteet ettt ettt ettt bt et st e b s bt et s bt et e ebe e bt saeenaeemeenbeeseenbeebnens 123

The TAP CONLIOIIET ...cuviiiiiiiiiiiiiieee ettt ettt ettt e sate st e bbesateebeesaeeeabes 124
Embedded Trace Macrocell (ETIM) ...t 125
TIIZEET CONAILION ...eeiiiiiiiiiiiiieiiete ettt ettt st b e et eseea e e e et e esse e e e sneeanens 125

Code tracing and data trACING .........oeeeviireriiereetertieiee ettt sttt st et et eat et e e e saeeseesbesbeenaesbeens 125
J-Trace integration example - JAR Embedded Workbench for ARM ..........cccocoeiiniiiiniininiincnnn, 126
Embedded Trace Buffer (ETB) ..ottt 130
FIash Programiming ..ottt ettt ettt ettt ettt e b et e b enees 130
How does flash programming via J-Link / J-Trace Work? .........cccoceoiriinininiiniiceneeeeens 130

Data download t0 RAM ....cc.ccoiiiiiiiiiiiiieeee ettt s e 130

Data download via DICC ....cc..coiuiiiiiiieiie et ettt sttt et sttt st e bt e saee e 131
Available options for flash programming ..........cccccecevieriiiiinenienenteeeeeteeeete et 131
J-LINK/ J-Trace fIFMWAKE .......ooii ettt sttt ettt e s et ne e seeneenseeneas 131
FIrMWAIE UPAALE ....ceveeeiiiieiiinieiiiieee ettt ettt st eb e sttt eb et st esaeebe et e sbeenaesbeens 131
Invalidating the fITMWATE ........ccccociiiiiiiiii ettt 131

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Table of Contents

Designing the target board fOr trace ...t 133
Overview of high-speed board design ... 133
AVOIAING STUDS ..ttt ettt b et bttt sb et bt et e s bt et sbeea b bt et e sbeeneenbeebeen 133

Minimizing Signal Skew (Balancing PCB Track Lengths) .......cccoccooiiiiiiniiiininiiicineccceeee, 133

Minimizing CTOSSTALK .......coouiriiiiiiiiieiieertee ettt sttt ettt st eb et ate e sbeenaesbeen 133

Using impedance matching and termMination ............ccceoeevieririeriinieniieeeeeseeie e 133
Terminating the trace signal ...ttt 133

Rules fOr SEries LEIMINALOLS ......cc.ceieriirieriertieteit et e et ettt e e steest et e eitesteeseebesatenbeeseenbesseeteeneeneesaeeneas 134

SigNal reqUIrEeMENS ... e 134
SUPPOIt @aNd FAQS ... 135
Measuring download speed ..............cocooiiiiiiiiiii e 135

S AT 1N (0] 11001<) L O OO R SRRSO SU 135
TroubIeShOOLING ........coooiii ettt et sttt ettt sbe e naeeaees 135
GENETAL PTOCEAULE .....eouiiiiiiiiiiiieittet ettt ettt ettt et eb ettt e sb e ebte bt et e s b eb s et eebee bt sueensesaeen 135

Typical Problem SCENATIOS .......cccuevuieiirieiiriieientete ettt ettt st e s e ean e e e e ae e eaeennesanen 136

SNl ANANYSES ..ottt ettt st bttt st saaent 136

SEATE SEQUETICE ..euuveitiieiieeiieiteeiee ettt et e st e st et e et e bt e eateeab e e sabe e bt e bt e eabe e bt e sabeesbeesate e beessaesateenbeesaseenss 137
TTOUDIESNOOLINE .....oviiiiiiiiiiece ettt s s 137

CONLACLING SUPPOIL ..ottt ettt st ettt e ettt b e bt eb et sbe e et et et et eseeneeneeneas 137
Frequently Asked QUESLIONS .........c..cocooiiiiiiiiiiiiiiicceec ettt 138
GIOSSAINY ... 139
Literature and FEFEIrENCES ...........ocooiiiiii et 143
INAEX Rttt 145

J-Link_J-TraceARM-5

—e



IAR J-Link and IAR }J-Trace
10 User Guide J-Link_J-TraceARM-5



Introduction

This chapter gives a short overview about J-Link and J-Trace.

Requirements
Host System

To use J-Link or J-Trace you need a host system running Windows XP or later. For a list of all operating systems which
are supported by J-Link, please refer to Supported OS on page 11.

Target System

A target system with a supported CPU is required.
You should make sure that the emulator you are looking at supports your target CPU. For more information about which
J-Link features are supported by each emulator, please refer to Model comparison on page 12.

Supported OS

J-Link/J-Trace can be used on the following operating systems:

Microsoft Windows XP
Microsoft Windows XP x64
Microsoft Windows Vista
Microsoft Windows Vista x64
Windows 7

Windows 7 x64

J-Link / J-Trace models

J-Link / J-Trace is available in different variations, each designed for different purposes / target devices. Currently, the
following models of J-Link / J-Trace are available:

e J-Link ARM

e J-Link Ultra

e J-Trace ARM

e J-Trace for Cortex-M

In the following, the different J-Link / J-Trace models are described and the changes between the different hardware

versions of each model are listed. To determine the hardware version of your J-Link / J-Trace, the first step should be
to look at the label at the bottom side of the unit. J-Links / J-Traces have the hardware version printed on the back label.

If this is not the case with your J-Link / J-Trace, start JLink . exe, included in the arm\bin directory of your AR
Embedded Workbench installation. As part of the initial message, the hardware version is displayed.

l;:-.',; C:\Program Files'\SEGGER" JLinkARM_¥402d", JLink.exe

SEGGER J-Link Commander U4.82d (’'7* for help>
Compiled Mar 12 2889 15:39:38

DLL version U4.82d. compiled Mar 12 2889 15:39:15
Firmware: J-Link ARM U8 compiled Mar 12 268089 15:28:83

ez U8 .88

=1
UTarget = B.086U
JTAG speed: 5 kHz
J-Link>_

J-Link_J-TraceARM-5



MODEL COMPARISON

The following tables show the features which are included in each J-Link / J-Trace model.

Hardware features

. J)-Trace
J-Link J)-Trace
for Cortex-M
USB yes yes yes
Ethernet no no no
Supported cores ARM7/9/11, Cortex- ARM 7/9 (no tracing), ARM 7/9

A5/A8, Cortex-M0/M|/Cortex-M0/M|/M3/M4
M3/M4, Cortex-R4

JTAG yes yes yes
SWD yes yes no
SWO yes yes no
ETM Trace no yes yes

Software features

Software features are features implemented in the software primarily on the host. Software features can either come
with the J-Link or be added later using a license string.

J-Link J-Trace for Cortex-M }-Trace
Flash breakpoints2 yes(opt) yes(opt) yes(opt)
Flash download' yes(opt) yes(opt) yes(opt)

' TAR Embedded Workbench comes with its own flashloaders for most targets, so in most cases this feature is not
essential for debugging your applications in flash. For more information about how flash download via FlashDL works,
refer to Flash download on page 85.

% In order to use the flash breakpoints with J-Link no additional license for flash download is required. The flash
breakpoint feature allows setting an unlimited number of breakpoints even if the application program is not located in
RAM, but in flash memory. Without this feature, the number of breakpoints which can be set in flash is limited to the
number of hardware breakpoints (typically two for ARM 7/9, up to six for Cortex-M) For more information about
flash breakpoints, refer to Flash breakpoints on page 91.

J-LINK ARM

J-Link is a JTAG emulator designed for ARM cores. It connects via USB to a PC running
Microsoft Windows XP or later. For a complete list of all operating systems which are
supported, please refer to Supported OS on page 11. J-Link has a built-in 20-pin JTAG
connector, which is compatible with the standard 20-pin connector defined by ARM.

Additional features

e Direct download into flash memory of most popular microcontrollers supported P
e Full-speed USB 2.0 interface A

e Serial Wire Debug supported * e
e Serial Wire Viewer supported * A

e Download speed up to 720 KBytes/second ** %ﬂ%

e JTAG speed up to 12 MHz §

e RDI interface available, which allows using J-Link with RDI compliant software i

* = Supported since J-Link hardware version 6 ﬁ

** = Measured with J-Link Rev.5, ARM7 @ 50 MHz, 12MHz JTAG speed.

IAR J-Link and IAR }J-Trace
12 User Guide J-Link_J-TraceARM-5



Introduction —e

Specifications

The following table gives an overview about the specifications (general, mechanical, electrical) for J-Link ARM. All
values are valid for J-Link ARM hardware version 8.

’General

Supported OS For a complete list of all operating systems which are

supported, please refer to Supported OS on page | 1.
EN 55022, EN 55024

+5°C ... +60°C

-20°C ... +65 °C

Max. 90% rH

‘Mechanical ‘

Electromagnetic compatibility (EMC)
Operating temperature
Storage temperature

Relative humidity (non-condensing)

Size (without cables) 100mm x 53mm x 27mm

Weight (without cables) 70g

\Available interfaces ‘
USB 2.0, full speed

JTAG 20-pin

}ITAGISWD Interface, Electrical ‘

USB interface

Target interface

Power supply USB powered

Max. 50mA + Target Supply current.

Target interface voltage (V) 1.2V ... 5V
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Target supply current Max. 300mA

Reset Type Open drain. Can be pulled low or tristated.

Reset low level output voltage (Vo)

For the whole target voltage range (1.2V <= V| <= 5V)
LOW level input voltage (V)

HIGH level input voltage (V|y)

For 1.8V <= V| <= 3.6V

LOW level output voltage (Vg ) with a load of 10 kOhm
HIGH level output voltage (Vop) with a load of 10 kOhm
For 3.6 <= Vg <= 5V

LOW level output voltage (Vo ) with a load of 10 kOhm
HIGH level output voltage (Vop) with a load of 10 kOhm

VOL <= 10% of V":

V|L <= 40% of V”:
V|H >= 60% of V”:

VOL <= 10% of V":
VOH >= 90% of V”:

VOL <=20% of V":
VOH >= 80% of V“:

}lTAGISWD Interface, Timing

SWO sampling frequency
Data input rise time (T,.;)
Data input fall time (T¢g;)
Data output rise time (T,qo)
Data output fall time (T¢qo)
Clock rise time (T,)

Clock fall time (Tg)

Max. 6 MHz
Tedi <= 20ns
T¢qi <= 20ns
Trdo <= 10ns
Ttdo <= 10ns
T <= 10ns

T¢. <= 10ns

Table 1: J-Link ARM specifications

Download speed

The following table lists performance values (Kbytes/s) for writing to memory (RAM):

Hard ARM7 ARM9 Cortex-M3
ardware via JTAG via JTAG via SWD
-Link Rev. 6 — 8 720 Kbytes/s (12MHz JTAG) 550 Kbytes/s 180 Kbytes/s
Y Y Y
(12MHz JTAG) (12 MHz SWD)

Table 2: Download speed differences between hardware revisions

J-Link_J-TraceARM-5 13



14

All tests have been performed in the testing environment which is described on Measuring download speed on
page 135.

The actual speed depends on various factors, such as JTAG/SWD, clock speed, host CPU core etc.

Hardware versions

Versions 1-4

Obsolete.

Version 5.0

Identical to version 4.0 with the following exception:

e Uses a 32-bit RISC CPU.
e Maximum download speed (using DCC) is over 700 Kbytes/second.

e JTAG speed: Maximum JTAG frequency is 12 MHz; possible JTAG speeds are:

48 MHz / n, where n is 4, 5, ..., resulting in speeds of:

12.000 MHz (n = 4)

9.600 MHz (n = 5)

8.000 MHz (n = 6)

6.857 MHz (n=7)

6.000 MHz (n = 8)

5.333 MHz (n=9)

4.800 MHz (n = 10)

e Supports adaptive clocking.

Version 5.2

Identical to version 5.0 with the following exception:
e Target interface: RESET is open drain

Version 5.3

Identical to version 5.2 with the following exception:

e 5V target supply current limited
5V target supply (pin 19) of Kick-Start versions of J-Link is current monitored and limited. J-Link automatically
switches off 5V supply in case of over-current to protect both J-Link and host computer. Peak current (<= 10 ms)
limit is 1A, operating current limit is 300mA.

Version 5.4

Identical to version 5.3 with the following exception:
e Supports 5V target interfaces.

Version 6.0

Identical to version 5.4 with the following exception:

e Outputs can be tristated (Effectively disabling the JTAG interface)

e Supports SWD interface.

e SWD speed: Software implementation. 4 MHz maximum SWD speed.
e J-Link supports SWV (Speed limited to 500 kHz)

Version 7.0

Identical to version 6.0 with the following exception:

e Uses an additional pin to the UART unit of the target hardware for SWV support (Speed limited to 6 MHz).
Version 8.0

Identical to version 7.0 with the following exception:

e SWD support for non-3.3V targets.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Introduction

J-LINK ULTRA

J-Link Ultra is a JTAG/SWD emulator designed for ARM/Cortex and

other supported CPUs. It is fully compatible to the standard J-Link and

works with the same PC software. Based on the highly optimized and

proven J-Link, it offers even higher speed as well as target power
measurement capabilities due to the faster CPU, built-in FPGA and High X
speed USB interface. It connects via USB to a PC running Microsoft B
Windows XP or later. For a complete list of all operating systems which

are supported, please refer to Supported OS on page 19.. J-Link Ultra has

a built-in 20-pin JTAG/SWD connector.

Additional features

Fully compatible to the standard J-Link

Very high performance for all supported CPU cores
Hi-Speed USB 2.0 interface

JTAG speed up to 25 MHz

Serial Wire Debug (SWD) supported

Serial Wire Viewer (SWV) supported

SWV: UART and Manchester encoding supported
SWO sampling frequencies up to 25 MHz

Target power can be supplied

Target power consumption can be measured with high accuracy. External ADC can be connected via SPI

Specifications

The following table gives an overview about the specifications (general, mechanical, electrical) for J-Link Ultra. All
values are valid for J-Link Ultra hardware version 1.

Note:Some specifications, especially speed, are likely to be improved in the future with newer versions of the J-Link

software (freely available).

‘General

Supported OS

Electromagnetic compatibility (EMC)
Operating temperature
Storage temperature

Relative humidity (non-condensing)

For a complete list of all operating systems which are
supported, please refer to Supported OS on page | 1.

EN 55022, EN 55024
+5°C ... +60°C
-20°C ... +65 °C
Max. 90% rH

‘Mechanical

Size (without cables)

Weight (without cables)

100mm x 53mm x 27mm
73g

}Available interfaces

USB interface
Target interface

External (SPI) analog power measurement interface

USB 2.0, Hi-Speed
JTAG/SWD 20-pin

4-pin (Pins 14, 16, 18 and 20 of the 20-pin JTAG/SWD
interface)

}lTAGISWD Interface, Electrical

Target interface voltage (Vg)

Target supply voltage

Target supply current

Reset Type

Reset low level output voltage (Vo)

For the whole target voltage range (1.8V <= V| <= 5V)

1.8V ... 5V
4.5V ... 5V
Max. 300mA

Open drain. Can be pulled low or tristated.
VOL <= 10% of V":

Table 3: J-Link Ultra specifications

J-Link_J-TraceARM-5



LOW level input voltage (V)

HIGH level input voltage (V)

For 1.8V <= V| <= 3.6V

LOW level output voltage (Vg ) with a load of 10 kOhm
HIGH level output voltage (Vop) with a load of 10 kOhm
For 3.6 <= V| <=5V

LOW level output voltage (Vg ) with a load of 10 kOhm
HIGH level output voltage (Vop) with a load of 10 kOhm

V|L <= 40% of V":
V|H >= 60% of V”:

VOL <= 10% of V":
VOH >=90% of V":

VOL <= 20% of V":
VOH >= 80% of V":

}ITAGISWD Interface, Timing

SWO sampling frequency Max. 25 MHz

Data input rise time (T,.y;) T.gi <= 20ns

Data input fall time (T¢y;) T¢gi <= 20ns

Data output rise time (T,4o) Trdo <= 10ns

Data output fall time (T¢g,) Ttdo <= 10ns

Clock rise time (T,.) T <= 10ns

Clock fall time (T¢.) Ti. <= 10ns

}Analog power measurement interface ‘
Sampling frequency 50 kHz

Resolution I mA

‘External (SPI) analog interface ‘
SPI frequency Max. 4 MHz

Samples/sec Max. 50000

Resolution Max. 16-bit

Table 3: J-Link Ultra specifications

J-LINK ARM LITE

J-Link ARM Lite is a fully functional version of J-Link ARM debug probe, which is

available with an IAR KickStart Kit only.

Additional features

Very small form factor
Fully software compatible to J-Link ARM

JTAG clock up to 4 MHz
SWD, SWO supported for Cortex-M devices
Flash download into supported MCUs

Specifications

Any ARM7/9/11, Cortex-AS5/A8, Cortex-M0/M1/M3/M4, Cortex-R4 core supported

Standard 20-pin 0.1 inch JTAG connector (compatible to J-Link ARM)

The following table gives an overview about the specifications (general, mechanical, electrical) for J-Link ARM Lite.
All values are valid for J-Link ARM hardware version 8.

’General

Supported OS

Electromagnetic compatibility (EMC)
Operating temperature

Storage temperature

Relative humidity (non-condensing)

Size (without cables)

For a complete list of all operating systems which are
supported, please refer to Supported OS on page | I.

EN 55022, EN 55024
+5°C ... +60°C
-20°C ... +65 °C
Max. 90% rH

28mm x 26mm x 7mm

Table 4: J-Link ARM Lite specifications

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-5



Weight (without cables)

Introduction

6g

‘Mechanical

USB interface

Target interface

USB 2.0, full speed
JTAG 20-pin

,ITAGISWD Interface, Electrical

Power supply

Target interface voltage (V)
Target supply voltage

Target supply current

LOW level input voltage (V)
HIGH level input voltage (V|y)

USB powered
Max. 50mA + Target Supply current.

3.3V
4.5V ... 5V (if powered with 5V on USB)
Max. 300mA

Max. 40% of V¢
Min. 60% of V|

}ITAG/SWD Interface, Timing

Data input rise time (T,.;)
Data input fall time (Tg;)
Data output rise time (T,qo)
Data output fall time (T¢go)
Clock rise time (T,)

Clock fall time (Tg)

Max. 20ns
Max. 20ns
Max. 10ns
Max. 10ns
Max. 10ns
Max. 10ns

Table 4: J-Link ARM Lite specifications

J-LINK LITE CORTEX-M

J-Link Lite Cortex-M is a specific version of J-Link Lite which is designed to be used with

Cortex-M devices.

Very small form factor

JTAG clock up to 4 MHz
SWD, SWO supported

3.3V target interface voltage

Specifications

Fully software compatible to J-Link
Any Cortex-M0/M1/M3/M4 core supported

Flash download into supported MCUs
Standard 9- & 19-pin 0.05" Samtec FTSH connector

The following table gives an overview about the specifications (general, mechanical, electrical) for J-Link Lite Cortex-

M.

IGeneraI

Supported OS

Electromagnetic compatibility (EMC)
Operating temperature

Storage temperature

Relative humidity (non-condensing)
Size (without cables)

Weight (without cables)

For a complete list of all operating systems which are
supported, please refer to Supported OS on page | 1.

EN 55022, EN 55024
+5°C ... +60°C

-20°C ... +65 °C

Max. 90% rH

41mm x 34mm x 8mm

6g

’Mechanical

USB interface

Target interface

USB 2.0, full speed

19-pin 0.05" Samtec FTSH connector
9-pin 0.05" Samtec FTSH connector

Table 5: J-Link Lite Cortex-M specifications

J-Link_J-TraceARM-5

—e



}lTAGISWD Interface, Electrical

Power supply

Target interface voltage (V,f)
Target supply voltage

Target supply current

LOW level input voltage (V)
HIGH level input voltage (V)

USB powered
Max. 50mA + Target Supply current.

3.3V
4.5V ... 5V
Max. 300mA

Max. 40% of V“:
Min. 60% of Ve

}ITAG/SWD Interface, Timing

Data input rise time (T,.y;)
Data input fall time (T¢y;)
Data output rise time (T,q45)
Data output fall time (T¢g,)
Clock rise time (T,)

Clock fall time (T¢)

Max. 20ns
Max. 20ns
Max. 10ns
Max. 10ns
Max. 10ns
Max. 10ns

Table 5: J-Link Lite Cortex-M specifications

J-TRACE ARM

J-Trace is a JTAG emulator designed for ARM cores which includes trace (ETM) support. It

connects via USB to a PC running Microsoft Windows XP, Windows 2003, Windows Vista or

Windows 7. For a complete list of all operating systems which are supported, please refer to 4
Supported OS on page 19. J-Trace has a built-in 20-pin JTAG connector and a built in 38-pin 3

JTAG+Trace connector, which are compatible to the standard 20-pin connector and 38-pin

connector defined by ARM.

Additional features

Supports tracing on ARM7/9 targets

°
e JTAG speed up to 12 MHz
°
°

DCC speed up to 600 Kbytes/second *

* = Measured with J-Trace, ARM7 @ 50 MHz, 12MHz JTAG speed.

Specifications for J-Trace

Download speed up to 420 Kbytes/second *

iis

A Tragy
v

’General

Supported OS

Electromagnetic Compatibility (EMC)
Operating Temperature

Storage Temperature

Relative Humidity (non-condensing)
Size (without cables)

Weight (without cables)

For a complete list of all operating systems which are
supported, please refer to Supported OS on page | I.

EN 55022, EN 55024

+5°C ... +40°C
-20°C ... +65 °C
<90% rH

123mm x 68mm x 30mm
120g

‘Mechanical

USB Interface

Target Interface

USB 2.0, full speed

JTAG 20-pin (14-pin adapter available)
JTAG+Trace: Mictor, 38-pin

}lTAGISWD Interface, Electrical

Power Supply

Supported Target interface voltage

USB powered < 300mA
3.0 - 3.6 V (5V adapter available)

Table 6: J-Trace specifications

IAR J-Link and IAR }J-Trace
18  User Guide

J-Link_J-TraceARM-5



Introduction

Download speed
The following table lists performance values (Kbytes/s) for writing to memory (RAM):

Hardware ARM?7 via JTAG

420.0 Kbytes/s
(12MHz JTAG)

Table 7: Download speed differences between hardware revisions

ARMY via JTAG

280.0 Kbytes/s
(12MHz JTAG)

J-Trace Rev. |

All tests have been performed in the testing environment which is described on Measuring download speed on
page 135.

The actual speed depends on various factors, such as JTAG, clock speed, host CPU core etc.

Hardware versions
Version 1

This J-Trace uses a 32-bit RISC CPU. Maximum download speed is approximately 420 KBytes/second (600 KBytes/
second using DCC).

J-TRACE FOR CORTEX-M3

J-Trace for Cortex-M is a JTAG/SWD emulator designed for Cortex-M3
cores which includes trace (ETM) support. J-Trace for Cortex-M3 can
also be used as a J-Link and it also supports ARM7/9 cores. Tracing on
ARMY7/9 targets is not supported.

Additional features

e Has all the J-Link functionality

e Supports tracing on Cortex-M3 targets

Specifications

The following table gives an overview about the specifications (general, mechanical, electrical) for J-Trace for Cortex-
M3. All values are valid for the latest hardware version of J-Trace for Cortex-M3.

‘General

Supported OS For a complete list of all operating systems which are

supported, please refer to Supported OS on page 9.
EN 55022, EN 55024

+5°C ... +60°C

-20°C ... +65 °C

Max. 90% rH

Electromagnetic compatibility (EMC)
Operating temperature

Storage temperature

Relative humidity (non-condensing)
Size (without cables) 123mm x 68mm x 30mm

Weight (without cables) 120g

‘Mechanical

USB interface USB 2.0, Hi-Speed

JTAG/SWD 20-pin
(14-pin adapter available)
JTAG/SWD + Trace 19-pin

Target interface

}lTAGISWD Interface, Electrical

Power supply USB powered

Max. 50mA + Target Supply current.

Target interface voltage (V) 1.2V ... 5V
Target supply voltage 4.5V ... 5V (if powered with 5V on USB)
Target supply current Max. 300mA

LOW level input voltage (V)

Max. 40% of Vg

Table 8: J-Trace for Cortex-M3 specifications

J-Link_J-TraceARM-5



HIGH level input voltage (V) Min. 60% of Vg

}ITAG/SWD Interface, Timing

Data input rise time (T.q;) Max. 20ns

Data input fall time (T¢q;) Max. 20ns

Data output rise time (T,4o) Max. 10ns

Data output fall time (Tyo) Max. 10ns

Clock rise time (T,..) Max. 10ns

Clock fall time (T¢) Max. 10ns

’Trace Interface, Electrical

Power supply USB powered
Max. 50mA + Target Supply current.

Target interface voltage (V|f) .2V .. 5V

Voltage interface low pulse (V) Max. 40% of V¢

Voltage interface high pulse (V) Min. 60% of V¢

’Trace Interface, Timing

TRACECLK low pulse width (Ty,) Min. 2ns

TRACECLK high pulse width (T,,},) Min. 2ns

Data rise time (T.q) Max. 3ns

Data fall time (T¢y) Max. 3ns

Clock rise time (T,.) Max. 3ns

Clock fall time (T¢.) Max. 3ns

Data setup time (T) Min. 3ns

Data hold time (T}) Min. 2ns

Table 8: J-Trace for Cortex-M3 specifications

Download speed

The following table lists performance values (Kbytes/s) for writing to memory (RAM):

Hardware Cortex-M3
J-Trace for Cortex-M3 V2 190 Kbytes/s (12MHz SWD)
760 KB/s (12 MHz JTAG)
-Trace for Cortex-M V3.1 190 Kbytes/s (12MHz SWD
yt

1440 KB/s (25 MHz JTAG)

Table 9: Download speed differences between hardware revisions

The actual speed depends on various factors, such as JTAG, clock speed, host CPU core etc.

Hardware versions
Version 2

Obsolete.

Version 3.1

Identical to version 2.0 with the following exceptions:

e Hi-Speed USB
e Voltage range for trace signals extended to 1.2 -3.3 V

e Higher download speed

Common features of the J-Link product family
e USB 2.0 interface (Full-Speed/Hi-Speed, depends on J-Link model)
e Any ARM7/9/11 (including thumb mode), Cortex-A5/A8, Cortex-M0/M1/M3/M4, Cortex-R4 core supported

IAR J-Link and IAR }J-Trace
20 User Guide J-Link_J-TraceARM-5



Introduction

Automatic core recognition

Maximum JTAG speed 12/25 MHz (depends on J-Link model)
Seamless integration into the IAR Embedded Workbench® IDE
No power supply required, powered through USB

Support for adaptive clocking

All JTAG signals can be monitored, target voltage can be measured
Support for multiple devices

Fully plug and play compatible

Standard 20-pin JTAG/SWD connector, 19-pin JTAG/SWD and Trace connector, standard 38-pin JTAG+Trace
connector

USB and 20-pin ribbon cable included
Memory viewer (J-Mem) included

Full integration with the IAR C-SPY® debugger; advanced debugging features available from IAR C-SPY
debugger.

14-pin JTAG adapter available

J-Link 19-pin Cortex-M Adapter available

J-Link 9-pin Cortex-M Adapter available

Adapter for 5V JTAG targets available for hardware revisions up to 5.3
Optical isolation adapter for JTAG/SWD interface available

Target power supply via pin 19 of the JTAG/SWD interface (up to 300 mA to target with overload protection),
alternatively on pins 11 and 13 of the Cortex-M 19-pin trace connector

Supported CPU cores

J-Link / J-Trace has been tested with the following cores, but should work with any ARM7/9/11, Cortex-M0/M1/M3/

M4 and Cortex-AS5/A8/A9/R4 core. If you experience problems with a particular core, do not hesitate to contact Segger.

ARM7TDMI (Rev 1)
ARM7TDMI (Rev 3)
ARM7TDMI-S (Rev 4)
ARM720T
ARM920T
ARM922T
ARM926EJ-S
ARMY46E-S
ARMOI66E-S
ARM1136JF-S
ARM1136J-S
ARM1156T2-S
ARMI1156T2F-S
ARM1176JZ-S
ARMI1176JZF
ARMI1176JZF-S
Cortex-AS

Cortex-A8
Cortex-A9
Cortex-MO
Cortex-M1
Cortex-M3
Cortex-M4

J-Link_J-TraceARM-5

21



22

e Cortex-R4

Built-in intelligence for supported CPU-cores

In general, there are two ways two ways to support a CPU-core in the J-Link software:
Intelligence in the J-Link firmware
Intelligence on the PC-side (DLL)

Having the intelligence in the firmware is ideal since it is much more powerful and robust. The J-Link PC software
automatically detects which implementation level is supported for the connected CPU-core. If Intelligence in the
firmware is available, it is used. If you are using a J-Link that does not have intelligence in the firmware and only PC-
side intelligence is available for the connected CPU, a warning message is shown.

J-Link ».xx Warning |

'ou are uzing a.J-Link which dogsz not have inteligence
I for the selected CPU core [Cortes-bd 3] in the firmware.
|ntelligence in the firmware enables J-Link,
to generate sequences for the CPU core.,
YWithout thiz feature, all sequences are generated by the PC.

Inteligence in the firmware allows higher target interface speeds
and zignifizantly enhances both speed and stability af the
communication with the target CRL.

Y'ou can uze this J-Link with your target CPU, but we recommend
wzing a newer model of J-Link / J-Trace.

INTELLIGENCE IN THE J-LINK FIRMWARE

On newer J-Links, the intelligence for a new CPU-core is also available in the J-Link firmware which means, for these
J-Links the target sequences are no longer generated on the PC-side but directly inside the J-Link. Having the
intelligence in the firmware leads to improved stability and higher performance.

INTELLIGENCE ON THE PC-SIDE (DLL)

This is the basic implementation level for support of a CPU-core. This implementation is not J-Link model dependend,
since no intelligence for the CPU-core is necessary in the J-Link firmware. This means, all target sequences (JTAG/
SWDY...) are generated on the PC-side and the J-Link simply sends out these sequences and sends the result back to
the DLL. Using this way of implementation also allows old J-Links to be used with new CPU cores as long as a DLL-
Version is used which has intelligence for the CPU.

But there is one big disadvantage of implementing the CPU core support on the DLL-side: For every sequence which
shall be send to the target a USB or Ethernet transaction is triggered. The long latency especially on a USB connection
significantly affects the performance of J-Link. This is true especially, when performing actions where J-Link has to
wait for the CPU frequently. An example is a memory read/write operation which needs to be followed by status read
operations or repeated until the memory operation is completed. Performing this kind of task with only PC-side
intelligence will have to either make some assumption like: Operation is completed after a given number of cycles or
will have to make a lot of USB/Ethernet transactions. The first option (fast mode) will not work under some
circumstances such as low CPU speeds, the second (slow mode) will be more reliable but very slow due to the high
number of USB/Ethernet transactions. It simply boils down to: The best solution is having intelligence in the emulator
itself!

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Introduction

Limitations of PC-side implementations

o Instability, especially on slow targets
Due to the fact that a lot of USB transactions would cause a very bad performance of J-Link, on PC-side
implementations the assumption is made that the CPU/Debug interface is fast enough to handle the commands/
requests without the need of waiting. So, when using the PC-side-intelligence, stability can not be guaranteed in all
cases, especially if the target interface speed (JTAG/SWDY...) is significantly higher than the CPU speed.

o Poor performance
Since a lot more data has to be transferred over the host interface (typ. USB), the resulting download speed is
typically much lower than for implementations with intelligence in the firmware, even if the number of transactions
over the host interface is limited to a minimum (fast mode).

e No support

Please understand that we can not give any support if you are running into problems when using a PC-side
implementation.

Note:Due to these limitations, we recommend to use PC-side implementations for evaluation only.

FIRMWARE INTELLIGENCE PER MODEL

There are different models of J-Link / J-Trace which have built-in intelligence for different CPU-cores. In the following,
we will give you an overview about which model of J-Link / J-Trace has intelligence for which CPU-core.

Current models

The table below lists the firmware CPU support for J-Link & J-Trace models currently available.

& [ARM ARM Renesas
PR TR g L i Cortex-A/R [Cortex-M RX600
ITAG ITAG I TAG ITAG swp ITAG
J-Link 8 @ V] V] V] V] V]
J-Link Ultra I @ (V) (V] (V] (V) (V]
J-Link Lite 8 @ (V] (V] (V] ® (V]
J-Link Lite Cortex-M 8 9 [x) x) (V) ® [ x]
J-Trace ARM I ® %] (] % (%] o
J-Trace for Cortex-M 3 0 (%] (] (V] V) ]

Table 10: Built-in intelligence of current J-Links

Older models

The table below lists the firmware CPU support for older J-Link & J-Trace models which are not sold anymore.

& larM ARM Renesas
J-Link / J-Trace model g 719 Il Cortex-AlR  Cortex-M RX600
ITAG ITAG ITAG ITAG ’SWD ITAG
J-Link 319 S (%) %] not supported @
J-Link 1 O %] x) %] not supported
J-Link 5 @ %] ] %] not supported @
JLink 6 © © © © © ©
JLink 7 ® @ © @ © @
J-Trace for Cortex-M I [} V) ® ® %]

Table 11: Built-in intelligence of older J-Link models

J-Link_J-TraceARM-5

23



IAR J-Link and IAR }J-Trace
24 User Guide J-Link_J-TraceARM-5



Licensing

This chapter describes the different license types of J-Link related software and the legal use of the J-Link software.

Introduction

J-Link functionality can be enhanced by flash download and flash breakpoints (F1ashBP). The flash breakpoint feature
does not come with J-Link and need an additional license. In the following the licensing options of the software will
be explained.

Software components requiring a license
There are different software components which need an additional license:
e Flash breakpoints (F1ashBP)

In the following the licensing procedure and license types of the flash breakpoint feature are explained.

License types

For each of the software components which require an additional license, there are three types of licenses:
Built-in License

This type of license is easiest to use. The customer does not need to deal with a license key. The software automatically
finds out that the connected J-Link contains the built-in license(s). This is the type of license you get if you order J-
Link and the license at the same time, typically in a bundle.

Key-based license

This type of license is used if you already have a J-Link, but want to enhance its functionality by using flash
breakpoints. In addition to that, the key-based license is used for trial licenses. To enable this type of license you need
to obtain a license key. This license key has to be added to the J-Link license management. How to enter a license key
is described in detail in Licensing on page 91. Every license can be used on different PCs, but only with the J-Link the
license is for. This means that if you want to use flash breakpoints with other J-Links, every J-Link needs a license.

Device-based license

The device-based license comes with the J-Link software and is available for some devices. For a complete list of
devices which have built-in licenses, please refer to Device list on page 28. The device-based license has to be activated
via the debugger. How to activate a device-based license is described in detail in the section Activating a device-based
license on page 27.

J-Link_J-TraceARM-5 25



BUILT-IN LICENSE

This type of license is easiest to use. The customer does not need to deal with a license key. The software automatically
finds out that the connected J-Link contains the built-in license(s). To check what licenses the used J-Link have, simply
open the J-Link commander (JLink.exe). The J-Link commander finds and lists all of the J-Link’s licenses

automatically, as can be seen in the screenshot below.

ommander [_ (O] %]

SEGGER J-Link Commander U3.78d <'7’ for help>
Compiled Jan 16 2888 19:55:4@
DLL version U3.78d,. compiled Jan 16 2888 19:55:31

y : J-Link ARM U6 compiled Jan 21 2088 16:81:17

s) = FlashBP. FlashDL
6U

.38

Info: TotallRLen = 17, IRPrint = Bx881129
JTAG speed: 38 kH=z
Info: CP15.8.8: Bx41259668: ARM. Architecure S5TE
Info: J-Link: ARM?,. 966 core
Found 3 JTAG devices,., Total IRLen = 17:

Id of device #8: Bx84578841

Id of device # Bx25966841

Id of device # Bx2457F841
Found ARM with core Id Bx25966841 (ARM?>

ETH U1.3: 1 pairs addr.comp, B data comp, 4 MM decs. 1 counters

J-Link?

KEY-BASED LICENSE

When using a key-based license, a license key is required in order to enable the J-Link flash breakpoint feature. License
keys can be added via the license manager. How to enter a license via the license manager is described in Licensing on
page 91. Like the built-in license, the key-based license is only valid for one J-Link, so if another J-Link is used it needs

a separate license.

Entering a key-based license
The easiest way to enter a license is the following:

Open the J-Link control panel window, go to the General tab and choose License.

J SEGGER J-Link ARM ¥4.04a - Control panel

Link
General | Settingsl BreakMatchI Log I CPU Hegsl Target Powerl Sty I Devicel Emulatorl Al I L4
¥ Show bay icon
¥ Start minimized
V¥ Alwaps on top
Process IE:\Program Filez%SEGGER W LinkARM_Va04ahLinkAR
3 JeLink [IAR J-Link K5 V5.4, SN=1 |
ff Target interface [ITAG: 5 kHz Endian [Litle [ 329V |—
\{‘-'?:E
{
License About
Ready JLINKARM_GetSpeed (Done) 0,777 sec, in 28 calls 4

IAR J-Link and IAR }J-Trace

26 User Guide J-Link_J-TraceARM-5



Licensing —eo

Now the J-Link license manager will open and show all licenses, both key-based and built-in licenses of J-Link.

J-Link ARM License management E

Licenses installed on PC:
| Expires |

Serial number | Feature

Licenses in emulatar:
Serial number |Features |

Currently active licenses I

Add license | Delete license |

Now choose Add license to add one or more new licenses. Enter your license(s) and choose OK. Now the licenses
should have been added.

J-Link ARM License management E

Licenses installed on PC:

Serial number | Feature | Expires |
FlashBP Mewver
FlashDL Mewver

Licenses in emulatar:
Serial number |Features |

Currently active licenses |FlazhBP, FlashDL

Delete license QK |

Add license

DEVICE-BASED LICENSE

The device-based license is a free license, available for some devices. It’s already included in J-Link, so no keys are
necessary to enable this license type. To activate a device based license, the debugger needs to select a supported device.

Activating a device-based license

In order to activate a device-based license, the debugger needs to select a supported device. To check if the debugger
has selected the right device, simply open the J-Link control panel and check the device section in the General tab.

J SEGGER J-Link ARM ¥4.04a - Control panel

Link
General | Settingsl BreakMatchI Log I CPU Hegsl Target Powerl Sty I Devicel Emulatorl Al I L4
¥ Show bay icon
¥ Start minimized
V¥ Alwaps on top
Process IE:\Program Filez%SEGGER W LinkARM_Va04ahLinkAR
3 JeLink [IAR J-Link K5 V5.4, SN=1 |
ff Target interface [ITAG: 5 kHz Endian [Litle [ 329V |—
208
{
License About
Ready JLINKARM_GetSpeed (Done) 0,777 sec, in 28 calls 4

J-Link_J-TraceARM-5



28

Device list

The following list contains all devices which are supported by the device-based license

Manufacturer Name Licenses

NXP LPC210I J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2102 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2103 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2104 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2105 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2106, J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2109 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2114 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2119 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2124 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2129 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2131 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2132 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2134 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2136 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2138 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC214I J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2142 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2144 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2146 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2148 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2194 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2212 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2214 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2292 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2294 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2364 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2366 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2368 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2378 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2468 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2478 J-Link ARM FlashDL, J-Link ARM FlashBP
Table 1: Device list

Manufacturer Name Licenses

NXP LPC210I J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2102 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2103 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2104 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2105 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2106 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2109 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2114 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2119 J-Link ARM FlashDL, J-Link ARM FlashBP

Table 2: Device list

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-5



Licensing —eo

Manufacturer Name Licenses

NXP LPC2124 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2129 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2131 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2132 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2134 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2136 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2138 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC214I J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2142 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2144 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2146 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2148 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2194 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2212 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2214 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2292 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2294 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2364 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2366 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2368 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2378 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2468 J-Link ARM FlashDL, J-Link ARM FlashBP
NXP LPC2478 J-Link ARM FlashDL, J-Link ARM FlashBP

Table 2: Device list

Legal use of SEGGER J-Link software

The software consists of proprietary programs of SEGGER, protected under copyright and trade secret laws. All rights,
title and interest in the software are and shall remain with SEGGER. For details, please refer to the license agreement
which needs to be accepted when installing the software. The text of the license agreement is also available as entry in
the start menu after installing the software.

Use of software

J-Link software may only be used with original J-Link products. The use of the licensed software to operate product
clones is prohibited and illegal.

J-Link_J-TraceARM-5 29



Products

The following products are original products for which the use of the J-Link software is allowed:

J-LINK

J-Link is a JTAG emulator designed for ARM cores. It connects via USB to a PC running
MicrosoftWindows XP, Windows 2003, Windows Vista or Windows 7. J-Link has a built-in 20-
pin JTAG connector, which is compatible with the standard 20-pin connector defined by ARM.

Licenses

Comes with built-in licenses for flash download and flash breakpoints for some devices. For a

complete list of devices which are supported by the built-in licenses, please refer to Device list E
on page 28. ol
[+
2IAR
SRR
JTAG W SWD

J-LINK ULTRA

J-Link Ultra is a JTAG/SWD emulator designed for ARM/Cortex and
other supported CPUs. It is fully compatible to the standard J-Link and
works with the same PC software. Based on the highly optimized and o GoSw

y . . i Z2@s ‘.% >
proven J-Link, it offers even higher speed as well as target power g %?—;, 2 \ t‘:%,
measurement capabilities due to the faster CPU, built-in FPGA and High —--..__- U -
speed USB interface.
It connects via USB to a PC running Microsoft Windows XP, Windows
2003, Windows Vista or Windows 7.
J-Link Ultra has a built-in 20-pin JTAG/SWD connector.

Licenses

Comes with built-in licenses for flash download and flash breakpoints for some devices. For a complete list of devices
which are supported by the built-in licenses, please refer to Device list on page 28.

IAR J-Link and IAR }J-Trace
30 User Guide J-Link_J-TraceARM-5



Licensing

J-TRACE

J-Trace is a JTAG emulator designed for ARM cores which includes trace (ETM) support.

It connects via USB to a PC running Microsoft Windows XP, Windows 2003, Windows

Vista or Windows 7. J-Trace has a built-in 20-pin JTAG connector and a built in 38-pin

JTAG+Trace connector, which is compatible with the standard 20-pin connector and 38- A
pin connector defined by ARM. 43

Licenses e

Comes with built-in licenses for flash download and flash breakpoints for some devices. :
For a complete list of devices which are supported by the built-in licenses, please refer to :
Device list on page 28.

iis

J-TRACE FOR CORTEX-M

J-Trace for Cortex-M is a JTAG/SWD emulator designed for Cortex-M cores which include
trace (ETM) support. J-Trace for Cortex-M can also be used as a regular J-Link and it also
supports ARM7/9 cores. Please note that tracing on ARM7/9 targets is not supported by J-
Trace for Cortex-M. In order to use ETM trace on ARM?7/9 targets, a J-Trace is needed.

"3 Licenses
.:.” N Comes with built-in licenses for flash download and flash breakpoints for some devices. For
a complete list of devices which are supported by the built-in licenses, please refer to Device
; E list on page 28.
@ Tarpel power

IAR J-Link Lite
TAR J-Link Lite is an OEM version of J-Link.
Limitations
JTAG speed is limited to 4 MHz.
Licenses

No licenses are included. All licenses can be added.

Note:IAR J-Link is only delivered and supported as part of Starter kits. It is not sold to end
customer directly and not guaranteed to work with custom hardware.

J-Link OBs

e J-Link OBs (J-Link On Board) are single chip versions of J-Link which are used on various evaluation boards.

J-Link_J-TraceARM-5

31



lllegal Clones

Clones are copies of original products which use the copyrighted original firmware without a license. It is strictly
prohibited to use original J-Link software with illegal clones. Manufacturing and selling these clones is an illegal act
for various reasons, amongst them trademark, copyright and unfair business practise issues.

The use of illegal J-Link clones with this software is a violation of US, European and other international laws and is
prohibited.

If you are in doubt if your unit may be legally used with original J-Link software, please get in touch with us.

End users may be liable for illegal use of J-Link software with clones.

IAR J-Link and IAR }J-Trace
32  User Guide J-Link_J-TraceARM-5



J-Link and J-Trace related software

This chapter describes J-Link / J-Trace related software.

J-Link related software
J-LINK SOFTWARE AND DOCUMENTATION PACKAGE

J-Link is shipped with a bundle of applications. Some of the applications require an additional license.

Software Description

JLinkARM.dII DLL for using J-Link / J-Trace with third-party programs.

JLink.exe Free command-line tool with basic functionality for target analysis.

JLinkSTR9 Ix Free command-line tool to configure the ST STR9Ix cores. For more information please refer

to J-Link STR? Ix Commander (Command line tool) on page 34

JLinkSTM32 Free command-line tool for STM32 devices. Can be used to disable the hardware watchdog
and to unsecure STM32 devices (override read-protection).

J-Mem memory viewer Free target memory viewer. Shows the memory content of a running target and allows editing
as well.
J-Flash Stand-alone flash programming application. Requires an additional license. For more

information about J-Flash please refer to J-Flash ARM User’s Guide (UM08003).

Table 1: J-Link / J-Trace related software

J-Link software and documentation package in detail
The J-Link / J-Trace software documentation is supplied with AR Embedded Workbench.

J-Link_J-TraceARM-5

33



34

J-LINK COMMANDER (COMMAND LINE TOOL)

J-Link Commander (JLink.exe) is a tool that can be used for verifying proper installation of the USB driver and to
verify the connection to the ARM chip, as well as for simple analysis of the target system. It permits some simple
commands, such as memory dump, halt, step, go and ID-check, as well as some more in-depths analysis of the state of
the ARM core and the ICE breaker module.

Compiled Jun 27 2888 19:42:43
DLL version U3.86,. compiled Jun 27 2888 19:42:28
Firmware: J-Link ARM U6 compiled Jun 27 26888 18:35:51

Hardware: U6t.80
SN =
UTarget = 3.274U
JTAG speed: 5 kHz=
Info: TotallRLen = 4, IRPrint = Bx81
Found 1 JTAG device,. Total IRLen = 4:
Id of device H#8: Bx3FBFAFAF
Found ARM with core Id Bx3IFBFBFBF (ARM?7>
J-Link>

Using command script files

J-Link commander can also be used in script mode which allows the user to use J-Link commander for batch
processing and without user interaction. When using J-Link commander in script mode, the path to a script file is
passed to it. The syntax in the script file is the same as when using regular commands in J-Link commander (one line
per command).

Example

JLink.exe C:\script.jlink
Contents of script.jlink:

r

h

exec device = STM32F103ZE

loadbin C:\firmware.bin, 0x08000000

J-LINK STR91 X COMMANDER (COMMAND LINE TOOL)

J-Link STR91x Commander (JLinkSTR91x.exe) is a tool that can be used to configure STR91x cores. It permits
some STR9 specific commands like:

e Set the configuration register to boot from bank O or 1

e Erase flash sectors

e Read and write the OTP sector of the flash

e Write-protect single flash sectors by setting the sector protection bits

[

Prevent flash from communicate via JTAG by setting the security bit

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



J-Link and )-Trace related software

All of the actions performed by the commands, excluding writing the OTP sector and erasing the flash, can be undone.

This tool can be used to erase the flash of the controller even if a program is in flash which causes the ARM core to stall.

unsecure
protect

Set the size of the primary flash manually.
Syntax: fsize Bi11213. vhere B selects a 256 Kbhytes device.
1 a 512 Kbytes device. 2 a 1824 KBytes device
and 3 a 2848 Kbytes device
Show configuration register content and security status
Read memory
Syntax: mem <Addr>. <{NumBytes>
Erase flash sectors QTP can not bhe erased>.
Syntax: erase {SectorMaskL>, <SectorMaskH>
SectorMaskL = Bits B-8 mask sectors B-8 of bank 8
SectorMaskH = Bits B-4 mask sectors B-4 of bank 1

Bit 17 masks the configuration sector

Bit 18 masks the User—Code sector

All other hits are ignored
Erase flash bank 8
Erase flash bank 1
Perform a full chip erase
Boot from flash bank x (B and 1 are available>
Sytax: seth {int>
Blank check all flash sectors
Set the security bit. Protects device from read or debuy access
through the JIAG port <{can only be cleared by a full chip erased.
Unsecure the device. Content of configuration register iz saved.
Protect flash sectors.
Syntax: protect <{BankBSectorMask>. {BanklSectorMask>
BankBSectorMask: Bits B-8 mask flash sectors B-8 of bank 8
BankiSectorMask: Bits B-4 mask flash sectors B-4 of bank 1
Unprotect flash sectors.
Syntax: unprotect {BankBSectorMask>, {BankiSectorMask>
BankBSectorMask: Bits B-8 mask flash sectors B-8 of bank 8
BankiSectorMask: Bits B-4 mask flash sectors B-4 of bank 1
Read OTP sectors
Write words to the OTP sectors.
Syntax: writeotp {Wordi>, [{Word2>, ..., <UWord8>]

When starting the STR91x commander, a command sequence will be performed which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the GPIOs in output. The IOs are

maintained in this state until a next JTAG instruction is send." (ST Microelectronics)

Enabling Turbo Mode is necessary to guarantee proper function of all commands in the STR91x Commander.

J-Link_J-TraceARM-5

—e

35



36

J-LINK STM32 COMMANDER (COMMAND LINE TOOL)

J-Link STM32 Commander (JLinkSTM32 . exe) is a free command line tool which can be used to disable the hardware
watchdog of STM32 devices which can be activated by programming the option bytes. Moreover the J-Link STM32
Commander unsecures a read-protected STM32 device by re-programming the option bytes.

Note:Unprotecting a secured device or will cause a mass erase of the flash memory.

kARM'\Dutput'Release

SEGGER J-Link Unlock tool for STM3I2F18x devices

Compiled Apr 16 2B0A? @7:59:58

{c>» 2887 SEGGER Microcontroller GmbH & Co. KG. www.segger.com
Solutions for real time microcontroller applications

Connecting...0.K.

Performing init segquence...0.K.
SWD speed: 8888 kH=

Unlocking flash...0.K.

Press any key to exit.

J-MEM MEMORY VIEWER

J-Mem displays memory contents of ARM-systems and allows modifications of RAM and SFRs (Special Function
Registers) while the target is running. This makes it possible to look into the memory of an ARM chip at run-time;
RAM can be modified and SFRs can be written. You can choose between 8/16/32-bit size for read and write accesses.
J-Mem works nicely when modifying SFRs, especially because it writes the SFR only after the complete value has
been entered.

iy 3-Mem [H[=] B3

File Target Options Help

Address: IDxD Ex_glx_ﬂl Eefreshl

[Addrvess (B [1 [2 (3 [4[5[6 [?[8 9 [aA[B[C[D[E[F [ASCII
HAAAAAAA |B6 B8 BB En FE FF FF EA FE FF FF EA FE FF FF EA
AAAPAA16 |FE FF FF EA FE FF FF En 5C 87 B8 EA ?C B7 @@
AAAAAA2A |58 DB 9F ES 58 88 9F ES BF EA AB E1 18 FF 2F
AAAAAA3A |48 B8 9F ES D1 FA 21 E3 48 88 9F ES D2 FA 21
AAAPAA46 AP DA AG E1 6@ 80 4@ E2 13 FA 21 E3 6@ DB A@
AAAPAASHA | 2C @@ 9F E5 OF E@ A@ E1 1@ FF 2F E1 24 E@ 9F
AAAPAAGA |24 @@ 9F E5 1@ FF 2F E1 FE FF FF EA FE FF FF
#AAAAA7A |FE FF FF EA FE FF FF EA BB 88 21 88 91 68 66
HAAAAASA (BB FB FF FF 25 81 BB B8 68 88 BB 68 DD 12 66
AAAPAA%A | AP BS 1A 48 9F 21 C? 43 19 4 Bn 68 19 49 8@
[
[
[
[
[
[
[
[
[
[

IBBBBBAB (12 B2 BA 68 18 49 81 62 81 6E C? BY FC D5 17
IBBBBBEB | C1 62 81 6E 49 87 FC D5 81 6E 8% B7 FC D5 84
IBAAAACA |A1 63 81 6E B2 @7 FC D5 B1 6B B3 22 BA 43 82
)IBBBBBD6 (81 6E 8% BY FC D5 BE 48 BE 4% 81 68 81 28 85
IBBBBBED (A4 21 41 43 BA 44 BC 4B 53 58 48 1C 1F 28 F?
IAAAAAFA |BA 48 BB 4% 81 6@ @1 BC B8 47 CA 46 @A FC FF
)IBBBB166 (B8 B1 38 BB 44 FD FF FF 81 B6 88 B8 85 1C 19
IAAART 88 FB FF FF 6C BO B8 BB 78 BB B8 BB 34 F1 FF
IAAART 74 BB B8 BB 12 4A 13 48 78 B4 81 BA 11 1C 12
IAAART BA EB BB 68 54 68 15 68 88 2B 83 DB 5B 1E Eé6
AAAAA148 |EE 54 FB D1 BC 31 BC 32 B1 42 BC D2 53 68 14

Fieady Connected ARM core id: 3FOFOFOF  |Speed: 4000kHz 2

J-FLASH ARM (PROGRAM FLASH MEMORY VIA JTAG)

J-Flash ARM is a software running on Windows XP, Windows 2003 or Windows Vista systems and enables you to
program your flash EEPROM devices via the JTAG connector on your target system.

J-Flash ARM works with any ARM7/9 system and supports all common external flashes, as well as the programming
of internal flash of ARM microcontrollers. It allows you to erase, fill, program, blank check, upload flash content, and
view memory functions of the software with your flash devices.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



J-Link and )-Trace related software

J-Flash requires a additional license. Even without a license key you can still use J-Flash ARM to open project files,
read from connected devices, blank check target memory, verify data files and so on. However, to actually program
devices via J-Flash ARM and J-Link / J-Trace you are required to obtain a license key.

i, J-Flash ARM [C:\Program Files\Segger\J-Flash ARM\Default jflash]
File Edit Miew
i P10 ult O]
Hame

Cornection Use

pions  Window Help

Init JTAG speed | 30
JTAG speed | Auto

TAP rumber <riot used>
IR len <riot used>

Chip Generic ARMZ/ARMS
Clock speed | <dontt care>

Erdian Litle

Check coreld | Mo

ARMcarsld | 00

Uss target AidM | Mo

FoM address | 0v0

FéM size KB

Use DCC mode | Yes

Manufsctursr | no device selected
Devics no device selected
Size no device selected
Flashd no device selected
Base addisss | no device selected
Organization | no device selected

PRI

~d-Flash ARM (-Flash compiled Jul 4 2005 14,27.20)

- JLinkARM.dil [DLL compiled Jun 30 2005 10:57:30)
Fieading flash device list [C:\Program FileshS eagert-Flash ARM\Flash.csv]
- List of flash devices rsad suscessfully [147 Devicss)
Fieading MEL device list [C:\Program FilesSeagert-Flash ARMUMCL. csv]
- List of MCU devices read suscsssfully (50 Devices)

Open project file [C:4Progiam FileshS eagertJ Flash ARM\Defalflash]
-Project opened

| 4%

[List of MCU devices read sucsessfully (50 Devices) Nat connected Y

Features

Works with any ARM7/ARMS9 chip

ARM microcontrollers (internal flash) supported

Most external flash chips can be programmed

High-speed programming: up to 300 Kbytes/second (depends on flash device)
Very high-speed blank check: Up to 16 Mbytes/sec (depends on target)

Smart read-back: Only non-blank portions of flash transferred and saved

Easy to use, comes with projects for standard eval boards.

Using the J-LinkARM.dII
WHAT IS THE JLINKARM.DLL?

The J-LinkARM.d11 is a standard Windows DLL typically used from C or C++, but also Visual Basic or Delphi
projects. It makes the entire functionality of the J-Link / J-Trace available through the exported functions.

The functionality includes things such as halting/stepping the ARM core, reading/writing CPU and ICE registers and
reading/writing memory. Therefore, it can be used in any kind of application accessing an ARM core.

UPDATING THE DLL

The IAR C-SPY® debugger is shipped with the JLinkARM.dlI already installed. Anyhow it may make sense to replace
the included DLL with the latest one available, to take advantage of improvements in the newer version.

Updating the JLinkARM.dIl in the IAR Embedded Workbench for ARM (EWARM)

It’s recommended to use the J-Link DLL updater to update the JLinkaARM. d11 in the IAR Embedded Workbench. The
IAR Embedded Workbench IDE is a high-performance integrated development environment with an editor, compiler,
linker, debugger. The compiler generates very efficient code and is widely used. It comes with the J-LinkARM.d11 in
the arm\bin subdirectory of the installation directory. To update this DLL, you should backup your original DLL and
then replace it with the new one.

Typically, the DLL is located in C: \Program Files\IAR Systems\Embedded Workbench 6.n\arm\bin\.

J-Link_J-TraceARM-5

—e

37



After updating the DLL, it is recommended to verify that the new DLL is loaded as described in Determining which
DLL is used by a program on page 39.

J-Link DLL updater

The J-Link DLL updater is a tool which comes with the J-Link software and allows the user to update the
JLinkARM.d11 in all installations of the IAR Embedded Workbench, in a simple way. The updater is automatically
started after the installation of a J-Link software version and asks for updating old DLLs used by IAR. The J-Link DLL
updater can also be started manually. Simply enable the checkbox left to the IAR installation which has been found.
Click Ok in order to update the JLinkARM.d11 used by the IAR installation.

J SEGGER J-Link DLL Updater ¥3.86 [ %]

Link

The following 3rd-party applications uzing JLinkARM.dll have been found:

[[]14R Embedded Warkbench for ARM 4.404 (DLL V3.20h in "C:AT oohCHARNARM_V4404 4R M bin")

[]14R Embedded Warkbench for ARM 4.414 [DLL ¥3.80c in "C:AT oohCHARSNARM_V441 AMARMAbIR")

[[]14R Embedded Warkbench for ARM 4.424 [DLL V3,84 in "C:AToo\CHARNARM_V44245AR M bin'")

14R Embedded Workbench for ARM 4.314 [DLL ¥3.82 in "CATooMCHARNWARM_WV4 ANARMBEIR')

[]14R Embedded Warkbench for ARM 4.304 (DLL ¥3.80c in "C:AT oohCHARNARM_V430454RMbin")

[[]14R Embedded Warkbench for ARM 5.10 (DLL ¥3.78d in "C:AT oohCHARNARM_WS1 08WARMbIn")

[[]14R Embedded Warkbench for ARM 5.20 (DLL ¥3.85f in "C:AT oohCAARAARM_W520_betaB854ARMYbin'")
14R Embedded Workbench for ARM 5.20 [DLL V3.85) in "C:AT ool CMARNARM_WE20_beta302\AFMbin')
[[]14R Embedded Warkbench for ARM 5.17 [DLL Y3.78 in "C:AT oo CHARNARM_VST1_BETA_BO7ARMYbIn'")
[]14R Embedded Woarkbench for ARM 5.11 [DLL Y3.85h in "C:AT ook CAARNARM_WE11_97994ARM kN b
F 14F Embedded ‘Workbench for AR 520 [DLL W3.81k in "C:\Program Filesh AR SystemshEmbedded Workbench 5.0 [E'/ARM 5 20 ALPHA]\AHM;LI

| v

Select Al Select Mone |

Select the ones you would like to replace by thiz version.
The previous version will be renamed and kept in the zame folder, allowing manual “undo”.
I case of doubt, do not replace existing DLL(s).

*f'ou can always perform this operation at a later time via start menu.
Ok Cancel

DETERMINING THE VERSION OF JLINKARM.DLL

To determine which version of the JLink ARM.dIl you are facing, the DLL version can be viewed by right clicking the
DLL in explorer and choosing Properties from the context menu. Click the Version tab to display information
about the product version.

jlinkarm.dll Properties 2=l

General Wersion | Securityl Summaryl
File wersion: ~ 3.0.4.0
Description:  SEGGER J-Link ARM interface DLL

Copyright: Copyright © 2004, 2005

r— Other version infarmation

Item name: Walue:
Company Mame 3.00d ;I

QK I Cancel | Apply |

IAR J-Link and IAR }J-Trace
38 User Guide J-Link_J-TraceARM-5



J-Link and )-Trace related software

DETERMINING WHICH DLL IS USED BY A PROGRAM

To verify that the program you are working with is using the DLL you expect it to use, you can investigate which DLLs
are loaded by your program with tools like Sysinternals’ Process Explorer. It shows you details about the DLLs, used
by your program, such as manufacturer and version.

L ]

#¥ Process Explorer - Sysinternals: www.sysinternals.com

=10l x|

File Options ‘“iew Process Find DLL Help
|88 =m3 < ae e | NG
Process | FID | CPU | Diescription | Compan... |
E = Spstem |dle Process 1] 93

T Interupts n'a Hardware Interupts

| DPC: n'a Defered Procedu...

=l System ]

Egexplorer.exe 1148 ‘Windows Explorer  Microgoft...

L procesp.exe 480 1 Syzinternals Proc...  Sysintern...

XlarldePM.exe 1460 |4F Embedded ... |AR Spst...
Mame ¢ | Diescription | Company Marne | ergion | -
indicdll. dil Kevboard Language Indicator Shell... Microzoft Corporation 5.00,2920.0000

GGER olle

14R E-S Debugger Kemel

405, 0000.0000

Kemel.dl 14F Spstems

kemel32.dl Windows MT BASE APl Client DLL  Microsoft Corporation 5.00.2195.6688 |
locale.nls

Logfindowe. dil 18R Log ‘Window 14F Spstems 4.06.0000. 0000

lz32.dll LZ Expand/Compress APl DLL Microzoft Corporation h.00.2195.6611
MFCF.dll MFCOLL Shared Library - Retail Ve... Microzoft Corporation 7.10.3077.0000

mpr.dil Multiple Provider Router DLL Microzoft Corporation h.00.2195.6611 -

CPU Usage: 1%

|C0mmit Charge: 12.24% |Pr0cesses: 34 | v

Process Explorer is - at the time of writing - a free utility which can be downloaded from www.sysinternals.com.

J-Link_J-TraceARM-5

—e

39



IAR J-Link and IAR }J-Trace
40  User Guide J-Link_J-TraceARM-5



Setup

This chapter describes the setup procedure required in order to work with J-Link / |-Trace. Primarily this includes
the installation of the J-Link software and documentation package, which also includes a kernel mode J-Link USB
driver in your host system.

Installing the J-Link ARM

Refer to chapter J-Link and J-Trace related software on page 33 for an overview about the J-Link software and
documentation pack.

SETUP PROCEDURE

To install the J-Link ARM software and documentation pack, follow this procedure:
Note: Check for J-Link related downloads on our website: http://www.iar.com/jlinkarm
I Install TAR Embedded Workbench.

2 Connect your computer and the J-Link debug probe using the USB cable. The green LED on the front panel of the J-
Link debug probe will blink for a few moments while Windows searches for a USB driver.

3 When you do this for the first time, Windows will start the Install wizard. Choose Install from a specific location.

4 When asked to locate the USB drivers, click the browse button and navigate to the directory Program Files\IAR
Systems\Embedded Workbench 6.n\Kickstart\arm\drivers\JLink.
Note that Windows XP might display a warning that the driver is not certified by Microsoft. Ignore this warning and
click Continue.

5 Click Finish. The green LED on the J-Link debug probe stops blinking. The installation is now ready.

Note:Note: In Windows 7, the Installation Wizard is not started automatically and you will get a message that the driver
has not been installed properly. Navigate to IAR Systems\Embedded Workbench 6.n\arm\drivers\Jlink and
start the InstDrivers application. This will install the driver and the green light should shine steadily.

Setting up the USB interface
VERIFYING CORRECT DRIVER INSTALLATION

To verify the correct installation of the driver, disconnect and reconnect J-Link / J-Trace to the USB port. During the
enumeration process which takes about 2 seconds, the LED on J-Link / J-Trace is flashing. After successful
enumeration, the LED stays on permanently.

J-Link_J-TraceARM-5

41



Start the provided sample application JLink.exe, available in the arm\bin directory of your installation, which
should display the compilation time of the J-Link firmware, the serial number, a target voltage of 0.000V, a
complementary error message, which says that the supply voltage is too low if no target is connected to J-Link / J-
Trace, and the speed selection. The screenshot below shows an example.

SEGGER J-Link Commander U3.86 (*?' for helpd
Compiled Jun 27 2888 19:42:43

DLL version U3.86, compiled Jun 27 26008 19:42:28
Firmware: J-Link ARM U6 compiled Jun 27 26888 18:35:51

JTAG speed: 5 kHz
J-LinkZ>

In addition you can verify the driver installation by consulting the Windows device manager. If the driver is installed
and your J-Link / J-Trace is connected to your computer, the device manager should list the J-Link USB driver as a
node below "Universal Serial Bus controllers" as shown in the following screenshot:

Device Manager =1 E3
J Action  View |J = =

E|l WMBASIC
D\g Batteries
Computer
D Disk drives

Dizplay adapters

4} DVD/CD-ROM drives
2 Floppy disk controllers
= Floppy disk drives
= IDE ATASATAPI controllers
&2 Keyhoards
% Mice and other pointing devices
B3 Mebwork adapters
5 Ports [COM & LPT)

= Sound, video and game controllers

+ - Systern devices
|- & Uriversal Serial Bus controllers

% Intel 823714B/ER PCl to USBE Universal Host Controller

J-Link, driver
USE Root Hub

IAR J-Link and IAR }J-Trace
42  User Guide J-Link_J-TraceARM-5



Setup

Right-click on the driver to open a context menu which contains the command Properties. If you select this command,

a J-Link driver Properties dialog box is opened and should report: This device is working properly.

J-Link driver Properties EHE

General | Ditiver |

G%b J-Link driver
Device type: Univerzal Serial Bus controllers
Manufacturer: Segger
Location: J-Link
— Device statu:
Thiz device iz working properly. ;I

If you are having problems with this device, click Troubleshooter to
start the troubleshoater.

Device usage:
Use this device [enable) j

If you experience problems, refer to the chapter Support and FAQs on page 135 for help. You can select the Driver tab

for detailed information about driver provider, version, date and digital signer.

J-Link driver Properties EHE

General  Driver |

9@ i J-Link driver
Diriver Provider: Segger
Criver Date: 07-01-09

Criver Version: 2650
Digital Signer: Microzoft \Windows Hardware Compatibility Publ
To view details about the driver files loaded for this device, click Driver

Detailz. To uninstall the driver files for this device, click Uningtall. To update
the driver files for this device, click pdate Driver.

Uningtall | Update Driver... |

()8 | Cancel |

UNINSTALLING THE J-LINK USB DRIVER

If J-Link / J-Trace is not properly recognized by Windows and therefore does not enumerate, it makes sense to uninstall

the J-Link USB driver.

This might be the case when:

e The LED on the J-Link / J-Trace is rapidly flashing.

e The J-Link / J-Trace is recognized as Unknown Device by Windows.

To have a clean system and help Windows to reinstall the J-Link driver, follow this procedure:

Disconnect J-Link / J-Trace from your PC.

J-Link_J-TraceARM-5

—e

43



2 Open the Add/Remove Programs dialog (Start > Settings > Control Panel > Add/Remove Programs)
and select Windows Driver Package - Segger (jlink) USB and click the Change/Remove button.

&R Add/Remove Programs =] 3
Currently installed programs: Sork by:l Mame - I

BN 3-Link ARM V3. 66a =l

Change/Remove

3 Confirm the uninstallation process.

Uninstall Driver Package B

@ All devices uzing this driver will be removed. Do you wish to continue?

J-Link USB identification

In general, when using USB, there are two ways in which a J-Link can be identified:

e By serial number
e By USB address

Default configuration of J-Link is: Identification by serial number. Identification via USB address is used for
compatibility and not recommended.

Background information
"USB address" really means changing the USB-Product Id (PID).

The following table shows how J-Links enumerate in the different identification modes.

Identification PID Serial number

Serial number (default) 0x0101 Serial number is real serial number of the J-Link or user
assigned.

USB address 0 (Deprecated) 0x0101 123456

USB address | (Deprecated) 0x0102 123456

USB address 2 (Deprecated) 0x0103 123456

USB address 3 (Deprecated) 0x0104 123456

Table 1: J-Link enumeration in different identification modes

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-5



Setup

CONNECTING TO DIFFERENT J-LINKS CONNECTED TO THE
SAME HOST PC VIA USB

In general, when having multiple J-Links connected to the same PC, the J-Link to connect to is explicitly selected by
its serial number. IAR Embedded Workbench provides an extra field to type-in the serial number of the J-Link to
connect to:

The following screenshot shows the connection dialog of IAR Embedded Workbench for ARM:

Categony: Factory Settings |

General Options
CiC++ Compiler

Assembler -
Cutput Converter Setup  Connection | Breakpoint8|
Custam Euild i~ Communication
Build Actions « USE: ISeriaI number j Senial no ISSDDxxxx
Linker
Debugger € ICRAP:  |IF addiess =l
Simlator IF address: Iaaa.bbb.ccc.ddd Senal no I
Angel
GDE Server i~ Interface JTAG scan chain

IAR ROM-monitor [~ JTAG scan chain with multiple targets
b1 Trace @« JTAG

J-Linkj1-Trace T&P number: ID

TI Stellaris & 5wD

Marcraigor | San chaity cotitaing non-F devices

PE micro Freceeding bits: ID

ROI
ST-LIMK " Log communication

Third-Party Driver
$PROJ_DIR $cspycomm.lo
TI ®DS100 I = B d J

()8 I Cancel |

J-Link_J-TraceARM-5

45



IAR J-Link and IAR }J-Trace
46  User Guide J-Link_J-TraceARM-5



Working with J-Link and }J-Trace

This chapter describes functionality and how to use J-Link and J-Trace.

Connecting the target system
POWER-ON SEQUENCE

In general, J-Link / J-Trace should be powered on before connecting it with the target device. That means you should
first connect J-Link / J-Trace with the host system via USB and then connect J-Link / J-Trace with the target device via
JTAG. Power-on the device after you connected J-Link / J-Trace to it.

VERIFYING TARGET DEVICE CONNECTION

If the USB driver is working properly and your J-Link / J-Trace is connected with the host system, you may connect J-
Link / J-Trace to your target hardware. Then start JLink . exe which should now display the normal J-Link / J-Trace
related information and in addition to that it should report that it found a JTAG target and the target’s core ID. The

screenshot below shows the output of JLink.exe. As can be seen, it reports a J-Link with one JTAG device connected.

l;:-.',. C:\Program Files'\SEGGER" JLink ARM_¥386" JLink.exe

5 R J-Link Commander U3.86 (*?' for helpd
Compiled Jun 27 2888 19:42:43
DLL version U3.86, compiled Jun 27 26008 19:42:28
Firmware: J-Link ARM U6 compiled Jun 27 26888 18:35:51
Hardware: U6t.80
SN - I
UTarget = 3.274U
JTAG speed: 5 kHz=
: TotallRLen = 4. IRPrint = BxB1

Found 1 JTAG device,. Total IRLen = 4:

Id of device H#8: Bx3FBFAFAF
Found ARM with core Id Bx3IFBFBFBF (ARM?7>
J-Link>

PROBLEMS

If you experience problems with any of the steps described above, read the chapter Support and FAQs on page 135 for
troubleshooting tips. If you still do not find appropriate help there and your J-Link / J-Trace is an original product, you
can contact support via e-mail. Provide the necessary information about your target processor, board etc. and we will
try to solve your problem. A checklist of the required information together with the contact information can be found
in chapter Support and FAQs on page 135 as well.

Indicators

J-Link uses indicators (LEDs) to give the user some information about the current status of the connected J-Link. All
J-Links feature the main indicator. Some newer J-Links such as the J-Link Ultra come with additional input/output
Indicators. In the following, the meaning of these indicators will be explained.

MAIN INDICATOR

For J-Links up to V7, the main indicator is single color (Green). J-Link V8 comes with a bi-color indicator (Green &
Red LED), which can show multiple colors: green, red and orange.

J-Link_J-TraceARM-5



48

Single color indicator (J-Link V7 and earlier)

Indicator status Meaning
GREEN, flashing at 10 Hz Emulator enumerates.
GREEN, flickering Emulator is in operation. Whenever the emulator is executing a command, the LED is

switched off temporarily. Flickering speed depends on target interface speed. At low
interface speeds, operations typically take longer and the "OFF" periods are typically
longer than at fast speeds.

GREEN, constant Emulator has enumerated and is in Idle mode.

GREEN, switched off for |0ms once J-Link heart beat. Will be activated after the emulator has been in idle mode for at
per second least 7 seconds.

GREEN, flashing at | Hz Emulator has a fatal error. This should not normally happen.

Table 1: J-Link single color main indicator

Bi-color indicator (J-Link V8)

Indicator status Meaning
GREEN, flashing at 10 Hz Emulator enumerates.
GREEN, flickering Emulator is in operation. Whenever the emulator is executing a command, the LED is

switched off temporarily. Flickering speed depends on target interface speed. At low
interface speeds, operations typically take longer and the "OFF" periods are typically
longer than at fast speeds.

GREEN, constant Emulator has enumerated and is in Idle mode.

GREEN, switched off for |0ms once J-Link heart beat. Will be activated after the emulator has been in idle mode for at

per second least 7 seconds.
ORANGE Reset is active on target.
RED, flashing at | Hz Emulator has a fatal error. This should not normally happen.

Table 2: J-Link single color LED main color indicator

INPUT INDICATOR

Some newer J-Links such as the J-Link Ultra come with additional input/output Indicators. The input indicator is used
to give the user some information about the status of the target hardware.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Working with J-Link and }J-Trace

Bi-color input indicator

Indicator status Meaning

GREEN Target voltage could be measured. Target is connected.

ORANGE Target voltage could be measured. RESET is pulled low (active) on target side.

RED RESET is pulled low (active) on target side. If no target is connected, reset will be also

active on target side.

Table 3: J-Link bi-color input indicator

OUTPUT INDICATOR

Some newer J-Links such as the J-Link Ultra come with additional input/output Indicators. The output indicator is used
to give the user some information about the emulator-to-target connection.

Bi-color output indicator

Indicator status Meaning

OFF Target power supply via Pin 19 is not active.

GREEN Target power supply via Pin 19 is active.

ORANGE Target power supply via Pin |9 is active. Emulator pulls RESET low (active).
RED Emulator pulls RESET low (active).

Table 4: J-Link bi-color output indicator

JTAG interface

By default, only one ARM device is assumed to be in the JTAG scan chain. If you have multiple devices in the scan
chain, you must properly configure it. To do so, you have to specify the exact position of the ARM device that should
be addressed. Configuration of the scan is done by the target application. A target application can be a debugger such
as the AR C-SPY® debugger, which offers a dialog box for this purpose.

J-Link_J-TraceARM-5

—e

49



MULTIPLE DEVICES IN THE SCAN CHAIN

J-Link / J-Trace can handle multiple devices in the scan chain. This applies to hardware where multiple chips are
connected to the same JTAG connector. As can be seen in the following figure, the TCK and TMS lines of all JTAG
device are connected, while the TDI and TDO lines form a bus.

{701 Device1 Ttoop—— pltni Device 0 TDOp—

p| T™MS
p| TRST

—| TCK

&

TCK
TMS
TRST

— 1 0] DO |g———— |
JTAG

Currently, up to 8 devices in the scan chain are supported. One or more of these devices can be ARM cores; the other
devices can be of any other type but need to comply with the JTAG standard.
Configuration

The configuration of the scan chain depends on the application used. Read JTAG interface on page 49 for further
instructions and configuration examples.

CONFIGURATION DIALOG BOXES

As explained before, it is responsibility of the application to allow the user to configure the scan chain. This is done in
a dialog box.

IAR J-Link and IAR }J-Trace
50 User Guide J-Link_J-TraceARM-5



Working with J-Link and J-Trace —e

IAR J-Link configuration dialog box
This dialog box can be found under Project |Options.

Options for node “at91sam7s-ek™ E

Category: Factory Settings |

General Options
CiC++ Compiler
Assembler -
Output Canverter Setup  Connection | Breakpoints |
Custom Euild - Cammurication

Build Actions -

o IDewce 0 VI
Linker uss
Debugger " ICPAP Iaaa.bbb.ccc.ddd

Sirmulator
Angel
GDE Server

JTAG scan chain
[V UTAG scan chain with multiple targets
IAR. ROM-manitar

i & JTAG TAP number: ID

LMI FTDI  5wD W Scan chain containg non-5AM devices
Macraigor

ROI
Third-Party Driver

~ Interface

Freceeding bits: IU

™ Log communication

[(TO0LRIT_DIRg espycomm.iog J

()8 I Cancel |

J-Link_J-TraceARM-5 51



52

DETERMINING VALUES FOR SCAN CHAIN CONFIGURATION
When do | need to configure the scan chain?

If only one device is connected to the scan chain, the default configuration can be used. In other cases, J-Link / J-Trace
may succeed in automatically recognizing the devices on the scan chain, but whether this is possible depends on the
devices present on the scan chain.

How do | configure the scan chain?
2 values need to be known:

e The position of the target device in the scan chain

e The total number of bits in the instruction registers of the devices before the target device (IR len).

The position can usually be seen in the schematic; the IR len can be found in the manual supplied by the manufacturers
of the others devices.

ARM7/ARMD have an IR len of four.
Sample configurations

The diagram below shows a scan chain configuration sample with 2 devices connected to the JTAG port.

701 Device1 Ttoop—— 3l Device 0 Tpop—

= =
S22 S8
- - - = -
XY +TT
¥ 0 kB
SEe
— L ] O |g———— |
JTAG

Examples

The following table shows a few sample configurations with 1,2 and 3 devices in different configurations.

Device 0 Device | Device 2 .

Chip(IR len) Chip(IR len) Chip(IR len) Position IR len
ARM(4) - - 0 0
ARM(4) Xilinx(8) ; 0 0
Xilinx(8) ARM (4) ; | 8
Xilinx(8) Xilinx(8) ARM(4) 2 16
ARM (4) Xilinx(8) ARM(4) 0 0
ARM(4) Xilinx(8) ARM(4) 2 12
Xilinx(8) ARM (4) Xilinx(8) | 8

Table 5: Example scan chain configurations

The target device is marked in blue.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Working with }J-Link and }J-Trace

JTAG SPEED

There are basically three types of speed settings:

e Fixed JTAG speed
e Automatic JTAG speed
e Adaptive clocking.

These are explained below.

Fixed JTAG speed

The target is clocked at a fixed clock speed. The maximum JTAG speed the target can handle depends on the target
itself. In general ARM cores without JTAG synchronization logic (such as ARM7-TDMI) can handle JTAG speeds up
to the CPU speed, ARM cores with JTAG synchronization logic (such as ARM7-TDMI-S, ARM946E-S, ARM966EJ-
S) can handle JTAG speeds up to 1/6 of the CPU speed.

JTAG speeds of more than 10 MHz are not recommended.

Automatic JTAG speed
Selects the maximum JTAG speed handled by the TAP controller.

Note:On ARM cores without synchronization logic, this may not work reliably, because the CPU core may be clocked
slower than the maximum JTAG speed.

Adaptive clocking

If the target provides the RTCK signal, select the adaptive clocking function to synchronize the clock to the processor
clock outside the core. This ensures there are no synchronization problems over the JTAG interface.

If you use the adaptive clocking feature, transmission delays, gate delays, and synchronization requirements result in a
lower maximum clock frequency than with non-adaptive clocking.

SWD interface

The J-Link support ARMs Serial Wire Debug (SWD). SWD replaces the 5-pin JTAG port with a clock (SWDCLK) and
a single bi-directional data pin (SWDIO), providing all the normal JTAG debug and test functionality. SWDIO and
SWCLK are overlaid on the TMS and TCK pins. In order to communicate with a SWD device, J-Link sends out data
on SWDIO, synchronous to the SWCLK. With every rising edge of SWCLK, one bit of data is transmitted or received
on the SWDIO.

SWD SPEED

Currently only fixed SWD speed is supported by J-Link. The target is clocked at a fixed clock speed. The SWD speed
which is used for target communication should not exceed target CPU speed * 10. The maximum SWD speed which
is supported by J-Link depends on the hardware version and model of J-Link. For more information about the maximum
SWD speed for each J-Link / J-Trace model, please refer to J-Link / J-Trace models on page 11.

SwoO

Serial Wire Output (SWO) support means support for a single pin output signal from the core. The Instrumentation
Trace Macrocell ITM) and Serial Wire Output (SWO) can be used to form a Serial Wire Viewer (SWV). The Serial
Wire Viewer provides a low cost method of obtaining information from inside the MCU.

Usually it should not be necessary to configure the SWO speed because this is usually done by the debugger.

Max. SWO speeds

The supported SWO speeds depend on the connected emulator. They can be retrieved

J-Link_J-TraceARM-5

53



54

from the emulator. Currently, the following are supported:

Emulator Speed formula Resulting max. speed
J-Link V6 6MHz/n, n >= 12 500kHz
J-Link V7/V8 6MHz/n, n >= | 6MHz

Table 6: J-Link supported SWO input speeds

Configuring SWO speeds

The max. SWO speed in practice is the max. speed which both, target and J-Link can handle. J-Link can handle the
frequencies described in SWO on page 53 whereas the max. deviation between the target and the J-Link speed is about
3%.

The computation of possible SWO speeds is typically done in the debugger. The SWO output speed of the CPU is
determined by TRACECLKIN, which is normally the same as the CPU clock.

Example1

Target CPU running at 72 MHz. n is be between 1 and 8192.
Possible SWO output speeds are:

72MHz, 36MHz, 24MHz, ...

J-Link V7: Supported SWO input speeds are: 6MHz / n, n>= 1:
6MHz, 3MHz, 2MHz, 1.5MHz, ...

Permitted combinations are:

SWO output SWO input Deviation percent
6MHz, n =12 6MHz, n = | 0

3MHz, n =24 3MHz, n =2 0

<=3

2MHz, n = 36 2MHz, n =3 0

Table 7: Permitted SWO speed combinations

Example 2

Target CPU running at 10 MHz.

Possible SWO output speeds are:

10MHz, 5MHz, 3.33MHz, ...

J-Link V7: Supported SWO input speeds are: 6MHz / n, n>= 1:
6MHz, 3MHz, 2MHz, 1.5MHz, ...

Permitted combinations are:

SWO output SWO input Deviation percent
2MHz, n =5 2MHz, n =3 0

IMHz, n =10 IMHz,n =6 0

769kHz, n = 13 750kHz, n = 8 2.53

Table 8: Permitted SWO speed combinations

Multi-core debugging

J-Link / J-Trace is able to debug multiple cores on one target system connected to the same scan chain. Configuring
and using this feature is described in this section.

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-5



Working with J-Link and }J-Trace

HOW MULTI-CORE DEBUGGING WORKS

Multi-core debugging requires multiple debuggers or multiple instances of the same debugger. Two or more debuggers
can use the same J-Link / J-Trace simultaneously. Configuring a debugger to work with a core in a multi-core
environment does not require special settings. All that is required is proper setup of the scan chain for each debugger.
This enables J-Link / J-Trace to debug more than one core on a target at the same time.

The following figure shows a host, debugging two ARM cores with two instances of the same debugger.

Debugger

Instance 1

Both debuggers share the same physical connection. The core to debug is selected through the JTAG-settings as
described below.

J-Link_J-TraceARM-5

—e

55



USING MULTI-CORE DEBUGGING IN DETAIL

I Connect your target to J-Link / J-Trace.
2 Start IAR Embedded Workbench for ARM.

3 Choose Project |Options and configure your scan chain. The picture below shows the configuration for the first
ARM core on your target.

Options for node “BTL_AT91_¥430™ |

Categany: Factomy Settings |
eneral Options :
C/C++ Compiler Setup  Connection I
Azzembler — Cammunication
Cuztorn Build
Build Actions  Use
Link.er " TCRAP Iaaa.l:ul:ul:u.u:u:u:.ddd
D ebugger
simulatar —JTAG 2can chain
Anael

IAR BOM-maritar [V JTAG zcan chain with multiple targets

T8F nunber [0

M acraigor [” Scan chain contains non-4Rk devices

RDI
Third-Party Diriver Freceeding bits; II:I

[T Log communication

I$TEIEILKIT_DIH$'\|:spy|:Dmm.IDg J

k. I Cancel |

4 Start debugging the first core.
5 Start another instance of IAR Embedded Workbench for ARM.

IAR J-Link and IAR }J-Trace
56 User Guide J-Link_J-TraceARM-5



Working with J-Link and J-Trace —e

6 Choose Project |Options and configure your second scan chain. The following dialog box shows the configuration
for the second ARM core on your target.

Options for node “BTL_AT91_¥430" |
Lategory: Factory Settings |
eneral Optionz :

C/C++ Compiler Setup  Connection I
Azsembler — Comrunication
Cuztom Build
Build Actions  Use
Link.er " TCPAP Iaaa.l:ul:ul:u.u:u:n:.ddd
Debugger
Simulator —JTAG zzan chain
Angel ¥ JTAG scan chain with mulipl
I&R ROM-moritar J zzan chain with multiple targets
18P nnter. |
:;:S'I:raig':'r [~ Scan chain containg non-4Fk devices
Third-Party Driver Freceeding bits: II:I
[T Log communication
I$TDEILKIT_DIF|$"-.::$|::_I,I::Dmm.quug J
k. I Cancel |

7 Start debugging your second core.

Example:

TAP number TAP number
Core #I Core #2 Core #3

debugger #I debugger #2
ARM7TDMI ARM7TDMI-S ARM7TDMI 0 |
ARM7TDMI ARM7TDMI ARM7TDMI 0 2
ARM7TDMI-S ARM7TDMI-S ARM7TDMI-S | 2

Table 9: Multicore debugging

Cores to debug are marked in blue.

THINGS YOU SHOULD BE AWARE OF

Multi-core debugging is more difficult than single-core debugging. You should be aware of the pitfalls related to JTAG
speed and resetting the target.

JTAG speed

Each core has its own maximum JTAG speed. The maximum JTAG speed of all cores in the same chain is the minimum
of the maximum JTAG speeds.

For example:

e Core #1: 2MHz maximum JTAG speed
e Core #2: 4MHz maximum JTAG speed
e Scan chain: 2MHz maximum JTAG speed

J-Link_J-TraceARM-5 57



58

Resetting the target

All cores share the same RESET line. You should be aware that resetting one core through the RESET line means
resetting all cores which have their RESET pins connected to the RESET line on the target.

Connecting multiple J-Links / J-Traces to your PC

In general, it is possible to have an unlimited number of J-Links / J-Traces connected to the same PC. Current J-Link
models are already factory-configured to be used in a multi-J-Link environment, older J-Links can be re-configured to
use them in a multi-J-link environment.

HOW DOES IT WORK?

USB devices are identified by the OS by their product id, vendor id and serial number. The serial number reported by
current J-Links is a unique number which allows to have an almost unlimited number of J-Links connected to the same
host at the same time.

The sketch below shows a host, running two application programs. Each applicationcommunicates with one ARM core
via a separate J-Link.

Application

Instance 1

Older J-Links / J-Traces all reported the same serial number which made it necessary to configure them for USBO-3 if
multiple J-Link should be connected to the same PC in parallel.

For these J-Links, we recommend to re-configure them to use the new enumeration method (report real serial number).

Re-configuration can be done by using the J-Link Configurator, which is part of the J-Link software and documentation
package.

Re-configuring J-Link to use the new method does not have any bad side-effects on the current debug environment.
Usually the user does not see any difference as long as only one emulator is connected.

IAR J-Link and IAR J-Trace
User Guide J-Link_J-TraceARM-5



Working with }J-Link and }J-Trace

J-Link control panel

Since software version V3.86 J-Link the J-Link control panel window allows the user to monitor the J-Link status and
the target status information in real-time. It also allows the user to configure the use of some J-Link features such as
flash download, flash breakpoints and ARM instruction set simulation. The J-Link control panel window can be
accessed via the J-Link tray icon in the tray icon list. This icon is available when the debug session is started.

sl 1:as

To open the status window, simply click on the tray icon.

L;:-.'h SEGGER J-Link ARM ¥4.04a - Control panel

General | Settingsl BreakMatchI Log I CPU Hegsl Target Powerl Sty I Devicel Emulatorl Al I L4
¥ Show bay icon
¥ Start minimized
V¥ Alwaps on top
Process IE:\Program Filez%SEGGER W LinkARM_Va04ahLinkAR
3 JeLink [IAR J-Link K5 V5.4, SN=1 |
ff Target interface [ITAG: 5 kHz Endian [Litle [ 329V |—
208
{
License About
Ready JLINKARM_GetSpeed (Done) 0,777 sec, in 28 calls 4

TABS

The J-Link status window supports different features which are grouped in tabs. The organization of each tab and the
functionality which is behind these groups will be explained in this section

General

In the General section, general information about J-Link and the target hardware are shown. Moreover the following
general settings can be configured:

e Show tray icon: If this checkbox is disabled the tray icon will not show from the next time the DLL is loaded.

e Start minimized: If this checkbox is disabled the J-Link status window will show up automatically each time the

DLL is loaded.
e Always on top: if this checkbox is enabled the J-Link status window is always visible even if other windows will

be opened.

The general information about target hardware and J-Link which are shown in this section, are:

e Process: Shows the path of the file which loaded the DLL.

e J-Link: Shows OEM of the connected J-Link, the hardware version and the Serial number. If no J-Link is
connected it shows "not connected" and the color indicator is red.

e Target interface: Shows the selected target interface JTAG/SWD) and the current JTAG speed. The target current

is also shown. (Only visible if J-Link is connected)

Endian: Shows the target endianess (Only visible if J-Link is connected)

Device: Shows the selected device for the current debug session.

License: Opens the J-Link license manager.

About: Opens the about dialog.

J-Link_J-TraceARM-5

—e

59



Settings

In the Settings section project- and debug-specific settings can be set. It allows the configuration of the use of flash
download and flash breakpoints and some other target specific settings which will be explained in this topic. Settings
are saved in the configuration file. This configuration file needs to be set by the debugger. If the debugger does not set
it, settings can not be saved. All settings can only the changed by the user himself. All settings which are modified
during the debug session have to be saved by pressing Save settings, otherwise they are lost when the debug session
is closed.

Section: Flash download

In this section, settings for the use of the J-Link ARM FlashDL feature and related settings can be configured. When
alicense for J-Link ARM FlashDL is found, the color indicator is green and "License found" appears right to the J-
Link ARM FlashDL usage settings.

B Flash download

* Auto License found

 On ¥ Skip download on CRC match
 Off W Weiify download

IEnabIed, 10272 bytes downloaded

e Auto: This is the default setting of J-Link ARM FlashDL usage. If a license is found J-Link ARM FlashDL is
enabled. Otherwise J-Link ARM FlashDL will be disabled internally.

e On: Enables the J-Link ARM FlashDL feature. If no license has been found an error message appears.
e Off: Disables the J-Link ARM FlashDL feature.

e Skip download on CRC match: J-Link checks the CRC of the flash content to determine if the current
application has already been downloaded to the flash. If a CRC match occurs, the flash download is not necessary
and skipped. (Only available if 7-Link ARM FlashDL usage is configured as Auto or On)

e Verify download: If this checkbox is enabled J-Link verifies the flash content after the download. (Only available
if 7-Link ARM FlashDL usage is configured as Auto or On)

Section: Flash breakpoints:

In this section, settings for the use of the F1ashBP feature and related settings can be configured. When a license for
FlashBP is found, the color indicator is green and "License found" appears right to the F1lashBP usage settings.

B Flash breakpoint

* Auto License found

 On I~ Show info windav during
O pragram

[Enabled

e Auto: This is the default setting of F1ashBP usage. If a license has been found the F1ashBP feature will be
enabled. Otherwise FlashBP will be disabled internally.

e On: Enables the F1ashBpP feature. If no license has been found an error message appears.
e Off: Disables the F1ashBp feature.

e Show window during program: When this checkbox is enabled the "Programming flash" window is shown when
flash is re-programmed in order to set/clear flash breakpoints.

IAR J-Link and IAR }J-Trace
60 User Guide J-Link_J-TraceARM-5



Flash download and flash breakpoints independent settings

Working with }J-Link and }J-Trace

These settings do not belong to the J-Link flash download and flash breakpoints settings section. They can be

configured without any license needed.

= E3

General  Seftings | Breakpointsl Lag I CPU Hegsl Target Powerl Sty I Devicel Emulatorl Mo I L4
Log file

ﬁc:uunk.mg
Settings file

’7|Not specified

B Flash download

L;:-.'h SEGGER - Control panel

™ Ovenide
Clear |—‘

I~ o verride—‘

M Flash breakpoint

& Auto | License found & Auto | License found
= 0On V Skip download on CRC match  0On ¥ Show info window during
 Off v Verfy download  Off program

|Disabled |Disabled

[T Ovenide device selection

V' Allow caching of flash contents [On)
¥ Allow instruction s=t simulation

™| Oweride memaony map

Modity breakpoints during execution IAIIDW j

[Ready 319K ARM_Getspeed (Done) [1.208 sec. in 32 calls 4

Log file: Shows the path where the J-Link log file is placed. It is possible to override the selection manually by
enabling the Override checkbox. If the Override checkbox is enabled a button appears which let the user choose the
new location of the log file.

Settings file: Shows the path where the configuration file is placed. This configuration file contains all the settings
which can be configured in the Settings tab.

Override device selection: If this checkbox is enabled, a dropdown list appears, which allows the user to set a
device manually. This especially makes sense when J-Link can not identify the device name given by the debugger
or if a particular device is not yet known to the debugger, but to the J-Link software.

Allow caching of flash contents: If this checkbox is enabled, the flash contents are cached by J-Link to avoid
reading data twice. This speeds up the transfer between debugger and target.

Allow instruction set simulation: If this checkbox is enabled, ARM instructions will be simulated as far as
possible. This speeds up single stepping, especially when FlashBPs are used.

Save settings: When this button is pushed, the current settings in the Settings tab will be saved in a configuration
file. This file is created by J-Link and will be created for each project and each project configuration (e.g.
Debug_RAM, Debug_Flash). If no settings file is given, this button is not visible.

Modify breakpoints during execution: This dropdown box allows the user to change the behavior of the DLL
when setting breakpoints if the CPU is running. The following options are available:

Allow: Allows settings breakpoints while the CPU is running. If the CPU needs to be halted in order to set the
breakpoint, the DLL halts the CPU, sets the breakpoints and restarts the CPU.

Allow if CPU does not need to be halted: Allows setting breakpoints while the CPU is running, if it does not need
to be halted in order to set the breakpoint. If the CPU has to be halted the breakpoint is not set.

Ask user if CPU needs to be halted: If the user tries to set a breakpoint while the CPU is running and the CPU
needs to be halted in order to set the breakpoint, the user is asked if the breakpoint should be set. If the breakpoint
can be set without halting the CPU, the breakpoint is set without explicitly confirmation by the user.

Do not allow: It is not allowed to set breakpoints while the CPU is running.

J-Link_J-TraceARM-5

—e

61



Break/Watch

In the Break/Watch section all breakpoints and watchpoints which are in the DLL internal breakpoint and watchpoint
list are shown.

.3, SEGGER J-Link ARM - Control panel M= B3
Generall Settings  Break/watch | Log I CPU Hegsl Target Powerl Sty I Devicel Emulatorl LI_’|
Breakpoints:
ﬂl Handle | Address | Mode | Permizzion | Implementation I
1 - 0x0200011C Unknown — Any Flash - TRC
2 - 008000128 Unknown — Any Flash - TRC
3 008000124 Unknown — Any Flash - TRC
4 0080001 34, Unknown — Any Flash - TRC
5 008000150 Unknown — Any Flash - TRC
E 0080001 B4, Unknown — Any Flash - TRC

‘Watchpoints:
# | Handle | Address | Data | Access |
1 0x8000000¢ 0x08000120 (0x00001000 /it 16-bit

Wectar catch:
# | ector |

[Ready 319K ARM_Readmem (Done) 1,494 sec, in 219 calls 4

Section: Code
Lists all breakpoints which are in the DLL internal breakpoint list are shown.

Handle: Shows the handle of the breakpoint.

Address: Shows the address where the breakpoint is set.
Mode: Describes the breakpoint type (ARM/THUMB)
Permission: Describes the breakpoint implementation flags.

Implementation: Describes the breakpoint implementation type. The breakpoint types are: RAM, Flash, Hard. An
additional TBC (to be cleared) or TBS (to be set) gives information about if the breakpoint is (still) written to the
target or if it’s just in the breakpoint list to be written/cleared.

Note:It is possible for the debugger to bypass the breakpoint functionality of the J-Link software by writing to the
debug registers directly. This means for ARM7/ARMSY cores write accesses to the ICE registers, for Cortex-M3
devices write accesses to the memory mapped flash breakpoint registers and in general simple write accesses for
software breakpoints (if the program is located in RAM). In these cases, the J-Link software can not determine the
breakpoints set and the list is empty.

Section: Data
In this section, all data breakpoints which are listed in the DLL internal breakpoint list are shown.

e Handle: Shows the handle of the data breakpoint.

e Address: Shows the address where the data breakpoint is set.

AddrMask: Specifies which bits of Address are disregarded during the comparison for a data breakpoint match.
(A 1 in the mask means: disregard this bit)

Data: Shows on which data to be monitored at the address where the data breakpoint is set.
Data Mask: Specifies which bits of Data are disregarded during the comparison
for a data breakpoint match. (A 1 in the mask means: disregard this bit)

Ctrl: Specifies the access type of the data breakpoint (read/write).

CtrlMask: Specifies which bits of Ctrl are disregarded during the comparison for a data breakpoint match.

Log

In this section the log output of the DLL is shown. The user can determine which function calls should be shown in the
log window.

IAR J-Link and IAR }J-Trace
62 User Guide J-Link_J-TraceARM-5



Working with J-Link and J-Trace —e

Available function calls to log: Register read/write, Memory read/write, set/clear breakpoint, step, go, halt, is halted.

3, I-Link ARM [_ [ =]

Generall Settingsl BreakAwatch Log |EIF'U Hegsl Target Powerl Sty I

I~ Registerwite [~ Memory wite [V BF set ¥ Step ¥ Halt

I~ Registerread [~ Memoryread W BFclear | Go I IsHalted Clear lng |
J-Link ARM LU2.85i [beta) OLL Log ;I
DOLL Compiled: Jun 26 20E2 17:B6:33

Logging started 2BBE-BE-27 15: 08

[

Te20a &628:

i
T
&=

= 1p8F 3 = @xFFFFFFF1]
dr = BREOEAEEES, Tupe = BuFFFFFFFL)
= 1pBFS = @xFFFFFFF1]

)
9]
EFHandle = BxBE88EEE3)
A

@
I
I
I
I
I
I
I
I
I
I
I
i
% ddr = BxBE1BEFES, Type = B:zFFFFFFF1]
I

I

I

0 0 0 0 0 0 0 0
| L U UL

MG A (it i 5
[T e R Iy Pl i iy e et
1O~ =00 R REErTF= GO
Lty I Tty N Tty Ty T T i
DIDTDIDNNDDDDD00DT
L = e ]

@@

G BEEEEEE1 )
B168F0S, Type = B:FFFFFFF1]

i o

CPU Regs

In this section the name and the value of the CPU registers are shown.

3, I-Link ARM [_ [ =]

Generall Settingsl BreakMatchI Log CPU Regs | Target Powerl Sty I

|ndex | Mame | WValue | State | -
a RO (0x0010269C

1 R1 (0x00000050

2 R2 0x00000010

3 R3 (0x00000003 —
4 R4 0x00201100

5 RS (0x00000000

g RE (0x00000000

7 R7 (0x00000000

g CPSR 0x80000053

| R15(PC) 0x00100FES

10 R8_USR (0x00000000

1 R3_USR (0x00000000

12 R10_USR (0x00000000

13 R11_USR (0x00000000

14 R1Z2_USR (0x00000002

15 R13_USR (0x00000000

18 R14_USR (0x00000000 LI

Ready 4

Target Power

In this section currently just the power consumption of the target hardware is shown.

. J-Link ARM M= B3

Generall Settingsl BreakMatchI Log I CPU Regs  Target Power | Sty I Devicel MemMapI

r— Current status——— Permanent status
(% Fower enabled " Fower enabled
" Fower disabled (* Fower disabled
— Power information
Consumption |238md, |—
Ready JLINKARM_ExecCommand {Done) 0,008 sec, in 20 calls 4

J-Link_J-TraceARM-5 63



64

SwWv

In this section SWV information are shown.

3, I-Link ARM [_ [ =]
Generall Settingsl BreakMatchI Log I CPU Hegsl Target Power 5w |
Statuzs IUAF!T encoding, 19200 bps Huost buffer |4 MEB |—
Bytes in buffer ID bytes Emulator buffer |4 KE |—

Bytes transferred |235?D bytes

Refresh counter |1 522

|Ready | | 4

e Status: Shows the encoding and the baudrate of the SWV data received by the target (Manchester/UART, currently
J-Link only supports UART encoding).

e Bytes in buffer: Shows how many bytes are in the DLL SWV data buffer.

e Bytes transferred: Shows how many bytes have been transferred via SWYV, since the debug session has been
started.

e Refresh counter: Shows how often the SWV information in this section has been updated since the debug session
has been started.

e Host buffer: Shows the reserved buffer size for SWV data, on the host side.

o Emulator buffer: Shows the reserved buffer size for SWV data, on the emulator side.

Reset strategies

J-Link / J-Trace supports different reset strategies. This is necessary because there is no single way of resetting and
halting an ARM core before it starts to execute instructions. For example reset strategies which use the reset pin can
not succeed on targets where the reset pin of the CPU is not connected to the reset pin of the JTAG connector. Reset
strategy 0 is always the recommended one because it has been adapted to work on every target even if the reset pin (Pin
15) is not connected.

What is the problem if the core executes some instructions after RESET?

The instructions which are executed can cause various problems. Some cores can be completely "confused", which
means they can not be switched into debug mode (CPU can not be halted). In other cases, the CPU may already have
initialized some hardware components, causing unexpected interrupts or worse, the hardware may have been initialized
with illegal values. In some of these cases, such as illegal PLL settings, the CPU may be operated beyond specification,
possibly locking the CPU.

STRATEGIES FOR ARM 7/9 DEVICES

Type 0: Hardware, halt after reset (normal)

The hardware reset pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU. This
typically halts the CPU shortly after reset release; the CPU can in most systems execute some instructions before it is
halted. The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the
faster the CPU can be halted.

Some CPUs can actually be halted before executing any instruction, because the start of the CPU is delayed after reset
release. If a pause has been specified, J-Link waits for the specified time before trying to halt the CPU. This can be
useful if a bootloader which resides in flash or ROM needs to be started after reset.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Working with }J-Link and }J-Trace

This reset strategy is typically used if nRESET and nTRST are coupled. If nRESET and nTRST are coupled, either on
the board or the CPU itself, reset clears the breakpoint, which means that the CPU can not be stopped after reset with
the BP@O reset strategy.

Type I: Hardware, halt with BP@0

The hardware reset pin is used to reset the CPU. Before doing so, the ICE breaker is programmed to halt program
execution at address 0; effectively, a breakpoint is set at address 0. If this strategy works, the CPU is actually halted
before executing a single instruction.

This reset strategy does not work on all systems for two reasons:

e If nRESET and nTRST are coupled, either on the board or the CPU itself, reset clears the breakpoint, which means
the CPU is not stopped after reset.

e Some MCUs contain a bootloader program (sometimes called kernel), which needs to be executed to enable ITAG
access.

Type 2: Software, for Analog Devices ADuC7xxx MCUs

This reset strategy is a software strategy. The CPU is halted and performs a sequence which causes a peripheral reset.
The following sequence is executed:

The CPU is halted
A software reset sequence is downloaded to RAM

[ ]
[ ]
e A breakpoint at address 0 is set
[ ]

The software reset sequence is executed.

This sequence performs a reset of CPU and peripherals and halts the CPU before executing instructions of the user

program. It is the recommended reset sequence for Analog Devices ADuC7xxx MCUs and works with these chips only.

Type 3: No reset

No reset is performed. Nothing happens.

Type 4: Hardware, halt with WP

The hardware RESET pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU using
a watchpoint. This typically halts the CPU shortly after reset release; the CPU can in most systems execute some
instructions before it is halted.

The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the faster the
CPU can be halted. Some CPUs can actually be halted before executing any instruction, because the start of the CPU
is delayed after reset release

Type 5: Hardware, halt with DBGRQ

The hardware RESET pin is used to reset the CPU. After reset release, J-Link continuously tries to halt the CPU using
the DBGRQ. This typically halts the CPU shortly after reset release; the CPU can in most systems execute some
instructions before it is halted.

The number of instructions executed depends primarily on the JTAG speed: the higher the JTAG speed, the faster the
CPU can be halted. Some CPUs can actually be halted before executing any instruction, because the start of the CPU
is delayed after reset release.

Type 6: Software

This reset strategy is only a software reset. "Software reset" means basically no reset, just changing the CPU registers
such as PC and CPSR. This reset strategy sets the CPU registers to their after-Reset values:

PC=0

CPSR = 0xD3 (Supervisor mode, ARM, IRQ / FIQ disabled)

All SPSR registers = 0x10

All other registers (which are unpredictable after reset) are set to 0.

The hardware RESET pin is not affected.

J-Link_J-TraceARM-5

—e

65



66

Type 7: Reserved

Reserved reset type.

Type 8: Software, for ATMEL AT91SAM7 MCUs

The reset pin of the device is disabled by default. This means that the reset strategies which rely on the reset pin (low
pulse on reset) do not work by default. For this reason a special reset strategy has been made available.

It is recommended to use this reset strategy. This special reset strategy resets the peripherals by writing to the
RSTC_CR register. Resetting the peripherals puts all peripherals in the defined reset state. This includes memory
mapping register, which means that after reset flash is mapped to address 0. It is also possible to achieve the same effect
by writing 0x4 to the RSTC_CR register located at address Oxfffffd00.

Type 9: Hardware, for NXP LPC MCUs

After reset a bootloader is mapped at address 0 on ARM 7 LPC devices. This reset strategy performs a reset via reset
strategy Type 1 in order to reset the CPU. It also ensures that flash is mapped to address 0 by writing the MEMMAP
register of the LPC. This reset strategy is the recommended one for all ARM 7 LPC devices.

STRATEGIES FOR CORTEX-M DEVICES

J-Link supports different specific reset strategies for the Cortex-M cores. All of the following reset strategies are
available in JTAG and in SWD mode. All of them halt the CPU after the reset.

Type 0: Normal

This is the default strategy. It works well for most Cortex-M devices. J-Link tries to reset both, core and peripherals by
setting the SYSRESETREQ & VECTRESET bits in the AIRCR. The VC_CORERESET bit is used to halt the CPU
before it executes a single instruction.

On devices that are known to have a bootloader, this bootloader is started after the core & peripherals have been reset
and stopped before trying to start the application program, thus ensuring that the bootloader (which may perform
important initialisations) has a chance to do so.

This type of RESET can fail:

One reason is that the CPU is in power down state. In this case, the reset pin is used to reset the device. If this fails as
well, then Connect-under-Reset is executed.

Other reasons why the initial reset may not work are typically shortcomings in the silicon (sometimes only in Beta
silicon). Some of these reasons are:

e Watchdog continues to run when CPU is halted
e SYSRESETREQ also reset debug unit

Type |I: Core

Only the core is reset via the VECTRESET bit. The peripherals are not affected. After setting the VECTRESET bit, J-
Link waits for the S_RESET_ST bit in the Debug Halting Control and Status Register (DHCSR) to first become high
and then low afterwards. The CPU does not start execution of the program because J-Link sets the VC_CORERESET
bit before reset, which causes the CPU to halt before execution of the first instruction.

Type 2: ResetPin

J-Link pulls its RESET pin low to reset the core and the peripherals. This normally causes the CPU RESET pin of the
target device to go low as well, resulting in a reset of both CPU and peripherals. This reset strategy will fail if the
RESET pin of the target device is not pulled low. The CPU does not start execution of the program because J-Link sets
the VC_CORERESET bit before reset, which causes the CPU to halt before execution of the first instruction.

Type 3: Connect under Reset

J-Link connects to the target while keeping Reset active (reset is pulled low and remains low while connecting to the
target). This is the recommended reset strategy for STM32 devices. This reset strategy has been designed for the case
that communication with the core is not possible in normal mode so the VC_CORERESET bit can not be set in order
to guarantee that the core is halted immediately after reset.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Working with J-Link and J-Trace —e

Type 4: Reset core & peripherals, halt after bootloader

Same as type 0, but bootloader is always executed. This reset strategy has been designed for MCUs/CPUs which have
a bootloader located in ROM which needs to run at first, after reset (since it might initialize some target settings to their
reset state). When using this reset strategy, J-Link will let the bootloader run after reset and halts the target immediately
after the bootloader and before the target application is started. This is the recommended reset strategy for LPC11xx
and LPC13xx devices where a bootloader should execute after reset to put the chip into the "real" reset state.

Type 5: Reset core & peripherals, halt before bootloader

Same as Type 0, but bootloader is never executed. Not normally used, except in situations where the bootloader needs
to be debugged.

Type 6: Reset for Freescale Kinetis devices

Performs a via reset strategy O (normal) first in order to reset the core & peripherals and halt the CPU immediately after
reset. After the CPU is halted, the watchdog is disabled, since the watchdog is running after reset by default and if the
target application does not feed the watchdog, J-Link loses connection to the device since it is reset permanently.

Type 7: Reset for Analog Devices CPUs (ADI Halt after kernel)

Performs a reset of the core and peripherals by setting the SYSRESETREQ bit in the AIRCR. The core is allowed to
perform the ADI kernel (which enables the debug interface) but the core is halted before the first instruction after the
kernel is executed in order to guarantee that no user application code is performed after reset.

Type 8: Reset core and peripherals

J-Link tries to reset both, core and peripherals by setting the SYSRESETREQ bit in the AIRCR. The
VC_CORERESET bit is used to halt the CPU before it executes a single instruction.

Type 9: Reset for LPC1200 devices

On the NXP LPC1200 devices the watchdog is enabled after reset and not disabled by the bootloader, if a valid
application is in the flash memory. Moreover, the watchdog keeps counting if the CPU is in debug mode. When using
this reset strategy, J-Link performs a reset of the CPU and peripherals, using the SYSRESETREQ bit in the AIRCR
and halts the CPU after the bootloader has been performed and before the first instruction of the user code is executed.
Then the watchdog of the LPC1200 device is disabled. This reset strategy is only guaranteed to work on "modern” J-
Links (J-Link V8, J-Link Pro, J-Link Ultra, J-Trace for Cortex-M, J-Link Lite) and if a SWD speed of min. 1 MHz is
used. This reset strategy should also work for J-Links with hardware version 6, but it can not be guaranteed that these
J-Links are always fast enough in disabling the watchdog.

Type 10: Reset for Samsung S3FN60D devices

On the Samsung S3FN60D devices the watchdog may be running after reset (if the watchdog is active after reset or not
depends on content of the smart option bytes at addr 0xCO). The watchdog keeps counting even if the CPU is in debug
mode (e.g. halted by a halt request or halted by vector catch). When using this reset strategy, J-Link performs a reset of
the CPU and peripherals, using the SYSRESETREQ bit and sets VC_CORERESET in order to halt the CPU after reset,
before it executes a single instruction. Then the watchdog of the S3FN60D device is disabled.

Using DCC for memory access

The ARM7/9 architecture requires cooperation of the CPU to access memory when the CPU is running (not in debug
mode). This means that memory can not normally be accessed while the CPU is executing the application program.
The normal way to read or write memory is to halt the CPU (put it into debug mode) before accessing memory. Even
if the CPU is restarted after the memory access, the real time behavior is significantly affected; halting and restarting
the CPU costs typically multiple milliseconds. For this reason, most debuggers do not even allow memory access if the
CPU is running.

Fortunately, there is one other option: DCC (Direct communication channel) can be used to communicate with the CPU
while it is executing the application program. All that is required is that the application program calls a DCC handler
from time to time. This DCC handler typically requires less than 1 ps per call.

J-Link_J-TraceARM-5 67



68

The DCC handler, as well as the optional DCC abort handler, is part of the J-Link software package and can be found
in the Program Files\IAR Systems\Embedded Workbench 6.n\arm\src\debugger\DCC directory of the
package.

WHAT IS REQUIRED?

e An application program on the host (typically a debugger) that uses DCC, in this case C-SPY
e A target application program that regularly calls the DCC handler
e The supplied abort handler should be installed (optional)

An application program that uses DCC is JLink.exe.

TARGET DCC HANDLER

The target DCC handler is a simple C-file taking care of the communication. The function DCC_Process () needs to
be called regularly from the application program or from an interrupt handler. If a RTOS is used, a good place to call
the DCC handler is from the timer tick interrupt. In general, the more often the DCC handler is called, the faster
memory can be accessed. On most devices, it is also possible to let the DCC generate an interrupt which can be used
to call the DCC handler.

TARGET DCC ABORT HANDLER

An optional DCC abort handler (a simple assembly file) can be included in the application. The DCC abort handler
allows data aborts caused by memory reads/writes via DCC to be handled gracefully. If the data abort has been caused
by the DCC communication, it returns to the instruction right after the one causing the abort, allowing the application
program to continue to run. In addition to that, it allows the host to detect if a data abort occurred.

In order to use the DCC abort handler, 3 things need to be done:

e Place a branch to bcC_Abort at address 0x10 ("vector" used for data aborts)
e Initialize the Abort-mode stack pointer to an area of at least 8 bytes of stack memory required by the handler
e Add the DCC abort handler assembly file to the application

J-Link script files

In some situations it it necessary to customize some actions performed by J-Link. In most cases it is the connection
sequence and/or the way in which a reset is performed by J-Link, since some custom hardware needs some special
handling which can not be integrated into the generic part of the J-Link software. Normally, the J-Link script file is
automatically set up by the debugger (if needed), based on the selected device in AR Embedded Workbench. J-Link
script files are written in C-like syntax in order to have an easy start to learning how to write J-Link script files. The
script file syntax does support most statements (if-else, while, declaration of variables, ...) which are allowed in C, but
not all of them. Moverover, there are some statements that are script file specific. The script file allows maximum
flexibility, so almost any target initialization which is necessary, can be supported.

ACTIONS THAT CAN BE CUSTOMIZED

The script file support allows customizing of different actions performed by J-Link. If an generic-implemented action
is replaced by an action defined in a scriptfile depends on if the corresponding function is present in the scriptfile. In
the following all J-Link actions which can be customized using a script file, are listed and explained.
ResetTarget()

Decsription

If present, it replaces the reset strategy performed by the DLL when issuing a reset.

Prototype

void ResetTarget (void) ;

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Working with }J-Link and }J-Trace

InitEMU()
Decsription

If present, it allows configuration of the emulator prior to starting target communication. Currently this function is only
used to configure if the target which is connected to J-Link has an ETB or not. For more information how to configure
the existence of an ETB, please refer to Global DLL variables on page 72.

Prototype

void InitEMU(void) ;

InitTarget()
Decsription

If present, it can replace the auto-detection capability of J-Link. Some targets can not be auto-detected by J-Link since
some special target initialization is necessary before communication with the core is possible. Moreover, J-Link uses a
TAP reset to get the JTAG IDs of the devices in the JTAG chain. On some targets this disables access to the core.

Prototype

void InitTarget (void) ;

SCRIPT FILE API FUNCTIONS

In the following, the API functions which can be used in a script file to communicate with the DLL are explained.

MessageBox()
Description
Outputs a string in a message box.

Prototype

api__ int MessageBox (const char * sMsg);

MessageBoxI ()
Description

Outputs a constant character string in a message box. In addition to that, a given value (can be a constant value, the
return value of a function or a variable) is added, right behind the string.

Prototype

api__ int MessageBoxl (const char * sMsg, int v);

Report()
Description
Outputs a constant character string on stdio.

Prototype

api__ int Report (const char * sMsg) ;

Reportl()
Description

Outputs a constant character string on stdio. In addition to that, a given value (can be a constant value, the return value
of a function or a variable) is added, right behind the string.

Prototype

api__ int Reportl (const char * sMsg, int v);

J-Link_J-TraceARM-5

69



70

JTAG_SetDeviceld()
Description

Sets the JTAG Id of a specified device, in the JTAG chain. The index of the device depends on its position in the JTAG
chain. The device closest to TDO has index 0. The Id is used by the DLL to recognize the device.

Before calling this function, please make sure that the JTAG chain has been configured correctly by setting the
appropriate global DLL variables. For more information about the known global DLL variables, please refer to Global
DLL variables on page 72.

Prototype

api__ int JTAG_SetDeviceId(int DeviceIndex, unsigned int Id);

JTAG_GetDeviceld()
Description

Retrieves the JTAG Id of a specified device, in the JTAG chain. The index of the device depends on its position in the
JTAG chain. The device closest to TDO has index 0.

Prototype

api___ int JTAG_GetDeviceId(int DeviceIndex) ;

JTAG_WritelR()
Description
Werites a JTAG instruction.

Before calling this function, please make sure that the JTAG chain has been configured correctly by setting the
appropriate global DLL variables. For more information about the known global DLL variables, please refer to Global
DLL variables on page 72.

Prototype

api__ int JTAG_WriteIR(unsigned int Cmd) ;

JTAG_StorelR()
Description
Stores a JTAG instruction in the DLL JTAG buffer.

Before calling this function, please make sure that the JTAG chain has been configured correctly by setting the
appropriate global DLL variables. For more information about the known global DLL variables, please refer to Global
DLL variables on page 72.

Prototype

api__ int JTAG_StoreIR(unsigned int Cmd) ;

JTAG_WriteDR()
Description
Writes JTAG data.

Before calling this function, please make sure that the JTAG chain has been configured correctly by setting the
appropriate global DLL variables. For more information about the known global DLL variables, please refer to Global
DLL variables on page 72.

Prototype

api__ int JTAG_WriteDR(unsigned __int64 tdi, int NumBits) ;

JTAG_StoreDR()
Description
Stores JTAG data in the DLL JTAG buffer.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Working with J-Link and J-Trace —e

Before calling this function, please make sure that the JTAG chain has been configured correctly by setting the
appropriate global DLL variables. For more information about the known global DLL variables, please refer to Global
DLL variables on page 72.

Prototype

api_ int JTAG_StoreDR(unsigned _ int64 tdi, int NumBits) ;

JTAG_Write()
Description

Writes a JTAG sequence (max. 64 bits per pin).
Prototype

api__ int JTAG_Write(unsigned __ _int64 tms, unsigned _ _int64 tdi, int NumBits);

JTAG_Store()

Description

Stores a JTAG seuqnece (max. 64 bits per pin) in the DLL JTAG buffer.
Prototype

api__ int JTAG_Store(unsigned __int64 tms, unsigned __int64 tdi, int NumBits);

JTAG_GetU32()
Description
Gets 32 bits JTAG data, starting at given bit position.

Prototype

api__ int JTAG_GetU32(int BitPos);

JTAG_WriteClocks()
Description
Writes a given number of clocks.

Prototype

api__ int JTAG_WriteClocks (int NumClocks) ;

JTAG_StoreClocks()

Description

Stores a given number of clocks in the DLL JTAG buffer.
Prototype

api__ int JTAG_StoreClocks (int NumClocks) ;

JTAG_Reset()
Description

Performs a TAP reset and tries to auto-detect the JTAG chain (Total IRLen, Number of devices). If auto-detection was
successful, the global DLL variables which determine the JTAG chain configuration, are set to the correct values. For
more information about the known global DLL variables, please refer to Global DLL variables on page 72.

Note:This will not work for devices which need some special init (for example to add the core to the JTAG chain),
which is lost at a TAP reset.

Prototype

api__ int JTAG_Reset (void) ;

J-Link_J-TraceARM-5 71



72

SYS_Sleep()
Description
Waits for a given number of miliseconds. During this time, J-Link does not communicate with the target.

Prototype

api__ int SYS_Sleep(int Delayms) ;

GLOBAL DLL VARIABLES

The script file feature also provides some global variables which are used for DLL configuration. Some of these
variables can only be set to some specifc values, other ones can be set to the whole datatype with. In the following all
global variables and their value ranges are listed and described.

Note: All global variables are treated as unsigned 32-bit values and are zero-initialized.

Variable Description RIW

CPU Used to set the target CPU core. If auto-detection of the device is not Write-only
possible, you have to set this variable to tell J-Link what CPU core is
connected to it. This variable can only be set to a known Global J-Link
DLL constant. For a list of all valid values, please refer to Global DLL
constants on page 73.
Example
CPU = ARMY926EJS;

JTAG_IRPre Used for JTAG chain configuration. Sets the number of IR-bits of all Read/Write
devices which are closer to TDO than the one we want to
communicate with.
Example
JTAG_IRPre = 6;

JTAG_DRPre Used for JTAG chain configuration. Sets the number of devices which Read/WVrite
are closer to TDO than the one we want to communicate with.
Example
JTAG_DRPre = 2;

JTAG_IRPost Used for JTAG chain configuration. Sets the number of IR-bits of all Read/Write
devices which are closer to TDI than the one we want to
communicate with.
Example
JTAG_IRPost = 6;

JTAG_DRPost Used for JTAG chain configuration. Sets the number of devices which Read/WVrite
are closer to TDI than the one we want to "communicate with.
Example
JTAG_DRPost = 0;

JTAG_IRLen IR-Len (in bits) of the device we want to communicate with. Read/Write
Example
JTAG_IRLen = 4;

JTAG_TotalIRLen Computed automatically, based on the values of JTAG_IRPre, Read-only
JTAG_DRPre, JTAG_IRPost and JTAG_DRPost.
Example
v = JTAG_TotalIRLen;

JTAG_AllowTAPReset En-/Disables auto-] TAG-detection of J-Link. Has to be disabled for ~ Write-only
devices which need some special init (for example to add the core to
the JTAG chain), which is lost at a TAP reset.
Allowed values
0 Auto-detection is enabled.
1 Auto-detection is disabled.

JTAG_Speed Sets the JTAG interface speed. Speed is given in kHz. Write-only
Example
JTAG_Speed = 2000; // 2MHz JTAG speed

Table 10: Global DLL variables

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Working with }J-Link and }J-Trace

Variable Description R/W
JTAG_ResetPin Pulls reset pin low / Releases nRST pin. Used to issue a reset of the Write-only
CPU. Value assigned to reset pin reflects the state. 0 = Low, | = high.
Example

JTAG_ResetPin = 0;
SYS_Sleep(5); // Give pin some time to get low
JTAG_ResetPin = 1;

JTAG_TRSTPin Pulls reset pin low / Releases nTRST pin. Used to issue a reset of the Write-only
debug logic of the CPU. Value assigned to reset pin reflects the state. 0
= Low, | = high.
Example
JTAG_TRSTPin = 0;
SYS_Sleep(5); // Give pin some time to get low
JTAG_TRSTPin = 1;

JTAG_TCKPin Pulls TCK pin LOW / HIGH. Value assigned to reset pin reflects the Read/Write
state. 0 = LOW, | = HIGH.
Example

JTAG_TCKPin = 0;

JTAG_TDIPin Pulls TDI pin LOW / HIGH. Value assigned to reset pin reflects the Read/Write
state. 0 = LOW, | = HIGH.
Example

JTAG_TDIPin = 0;

JTAG_TMSPin Pulls TMS pin LOW / HIGH. Value assigned to reset pin reflects the Read/Write
state. 0 = LOW, | = HIGH.
Example

JTAG_TMSPin = 0;

EMU_ETB_TIsPresent If the connected device has an ETB and you want to use it with J-link, Write-only
this variable should be set to |. Setting this variable in another
function as InitEmu () does not have any effect.
Example
void InitEmu(void) {
EMU_ETB_IsPresent = 1;

Table 10: Global DLL variables

GLOBAL DLL CONSTANTS

Currently there are only global DLL constants to set the global DLL variable cpu. If necessary, more constants will be
implemented in the future.

Constants for global variable: CPU
The following constants can be used to set the global DLL variable cpuU:

ARM7
ARM7TDMI
ARM7TDMIR3
ARM7TDMIR4
ARM7TDMIS
ARM7TDMISR3
ARMT7TDMISR4
ARMY9
ARMOTDMIS
ARM920T
ARMO922T
ARM926EJS
ARMOY46EJS

J-Link_J-TraceARM-5

—e

73



74

ARMO966ES
ARMO96SES
ARMI1

ARMI1136
ARM1136]
ARM1136JS
ARM1136JF
ARMI1136JFS
ARMI1156
ARMI1176
ARMI1176]
ARM1176]S
ARMI1176IF
ARMI1176JFS
CORTEX_MO
CORTEX_M1
CORTEX_M3
CORTEX_M3R1P0O
CORTEX_M3RI1P1
CORTEX_M3R2P0
CORTEX_M4
CORTEX_R4

SCRIPT FILE LANGUAGE

The syntax of the J-Link script file language follows the conventions of the C-language, but it does not support all
expresisons and operators which are supported by the C-language. In the following, the supported operators and
expressions are listed.

Supported Operators

The following operators are supported by the J-Link script file language:
Multiplicative operators: *, /, %

Additive operators: +, -

Bitwise shift operators: <<, >>)

Relational operators: <, >, <=, >=

Equality operators: ==, !=

Bitwise operators: &, I, A

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
e Logical operators: &&, Il
[ ]

Assignment operators: =, *=, /=, +=, -=, <<=, >>=, &=, =, |=

Supported type specifiers
The following type specifiers are supported by the J-Link script file language:

e void

e char

e int (32-bit)
e _ int64

Supported type qualifiers
The following type qualifiers are supported by the J-Link script file language:

® const

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Working with J-Link and J-Trace —e

e signed

e unsigned

Supported declarators
The following type qualifiers are supported by the J-Link script file language:

e Array declarators

Supported selection statements
The following selection statements are supported by the J-Link script file language:

e if-statements

e if-else-statements

Supported iteration statements
The following iteration statements are supported by the J-Link script file language:

e while

e do-while

Jump statements
The following jump statements are supported by the J-Link script file language:

e return

Sample script files

The J-Link software and documentation package comes with sample script files for different devices. The sample script
files can be found at $ULINK_INST_DIR$\Samples\JLink\Scripts.

EXECUTING J-LINK SCRIPT FILES

In J-Link commander

When J-Link commander is started it searches for a script file called
Default.JLinkScript. If this file is found, it is executed instead of the standard auto detection of J-Link. If this file
is not present, J-Link commander behaves as before and the normal auto-detection is performed.

In debugger IDE environment

To execute a script file out of your debugger IDE, simply select the script file to execute in the Settings tab of the J-
Link control panel and click the save button (after the debug session has been started). Usually a project file for J-Link
is set by the debugger, which allows the J-Link DLL to save the settings of the control panel in this project file. After
selecting the script file restart your debug session. From now on, the script file will be executed when starting the debug
session.

Command strings

The behavior of the J-Link can be customized via command strings passed to the JLinkARM.d11 which controls J-
Link. Applications such as the J-Link Commander, but also the C-SPY debugger which is part of the IAR Embedded
Workbench, allow passing one or more command strings. Command line strings can be used for passing commands to
J-Link (such as switching on target power supply), as well as customize the behavior (by defining memory regions and
other things) of J-Link. The use of command strings enables options which can not be set with the configuration dialog
box provided by C-SPY.

J-Link_J-TraceARM-5 75



76

LIST OF AVAILABLE COMMANDS

The table below lists and describes the available command strings.

Command Description

device Selects the target device.
DisableFlashBPs Disables the F1ashPB feature.
DisableFlashDL Disables the J-Link ARM FlashDL feature.
EnableFlashBPs Enables the FlashPB feature.
EnableFlashDL Enables the J-Link ARM FlashDL feature.

map exclude

map indirectread

map ram

map reset
SetAllowSimulation
SetCheckModeAfterRead
SetResetPulseLen
SetResetType
SetRestartOnClose

SetDbgPowerDownOnClose

SetSysPowerDownOnIdle

SupplyPower
SupplyPowerDefault

Ignore all memory accesses to specified area.

Specifies an area which should be read indirect.

Specifies location of target RAM.

Restores the default mapping, which means all memory accesses are permitted.
Enable/Disable instruction set simulation.

Enable/Disable CPSR check after read operations.

Defines the length of the RESET pulse in milliseconds.

Selects the reset strategy

Specifies restart behavior on close.

Used to power-down the debug unit of the target CPU when the debug session is
closed.

Used to power-down the target CPU, when there are no transmissions between
J-Link and target CPU, for a specified timeframe.

Activates/Deactivates power supply over pin 19 of the JTAG connector.

Activates/Deactivates power supply over pin 19 of the JTAG connector
permanently.

Table 11: Available command line options

device

This command selects the target device.

Syntax

device = <DevicelID>

DeviceID has to be a valid device identifier. For a list of all available device identifiers please refer to chapter

Supported devices on page 85.
Example

device = AT91SAM7S5256

DisableFlashBPs

This command disables the FlashBP feature.

Syntax

DisableFlashBPs

DisableFlashDL

This command disables the J-Link ARM FlashDL feature.

Syntax

DisableFlashDL

EnableFlashBPs

This command enables the F1ashBP feature.

IAR J-Link and IAR }J-Trace
User Guide

J-Link_J-TraceARM-5



Working with J-Link and J-Trace —e

Syntax

EnableFlashBPs

EnableFlashDL

This command enables the J-Link ARM FlashDL feature.

Syntax

EnableFlashDL

map exclude
This command excludes a specified memory region from all memory accesses. All subsequent memory accesses to this
memory region are ignored.
Memory mapping

Some devices do not allow access of the entire 4GB memory area. Ideally, the entire memory can be accessed; if a
memory access fails, the CPU reports this by switching to abort mode. The CPU memory interface allows halting the
CPU via a WAIT signal. On some devices, the WAIT signal stays active when accessing certain unused memory areas.
This halts the CPU indefinitely (until RESET) and will therefore end the debug session. This is exactly what happens
when accessing critical memory areas. Critical memory areas should not be present in a device; they are typically a
hardware design problem. Nevertheless, critical memory areas exist on some devices.

To avoid stalling the debug session, a critical memory area can be excluded from access: J-Link will not try to read or
write to critical memory areas and instead ignore the access silently. Some debuggers (such as IAR C-SPY) can try to
access memory in such areas by dereferencing non-initialized pointers even if the debugged program (the debuggee) is
working perfectly. In situations like this, defining critical memory areas is a good solution.

Syntax

map exclude <SAddr>-<EAddr>
Example
This is an example for the map exclude command in combination with an NXP LPC2148 MCU.

Memory map

0x00000000-0x0007FFFF On-chip flash memory

0x00080000-0x3FFFFFFF Reserved

0x40000000-0x40007FFF On-chip SRAM

0x40008000-0x7FCFFFFF Reserved

0x7FD00000-0x7FDO | FFF On-chip USB DMA RAM
0x7FD02000-0x7FD02000 Reserved

0x7FFFD000-0x7FFFFFFF Boot block (remapped from on-chip flash memory)
0x80000000-0xDFFFFFFF Reserved

0xE0000000-0xEFFFFFFF VPB peripherals

0xFO000000-0xFFFFFFFF AHB peripherals

The "problematic" memory areas are:

0x00080000-0x3FFFFFFF Reserved
0x40008000-0x7FCFFFFF Reserved
0x7FD02000-0x7FD02000 Reserved
0x80000000-0xDFFFFFFF Reserved

To exclude these areas from being accessed through J-Link the map exclude command should be used as follows:

map exclude 0x00080000-0x3FFFFFFF
map exclude 0x40008000-0x7FCFFFFF
map exclude 0x7FD02000-0x7FD02000
map exclude 0x80000000-0xDFFFFFFF

J-Link_J-TraceARM-5 77



map indirectread

This command can be used to read a memory area indirectly. Indirectly reading means that a small code snippet is
downloaded into RAM of the target device, which reads and transfers the data of the specified memory area to the host.
Before map indirectread can be called a RAM area for the indirectly read code snippet has to be defined. Use
therefor the map ram command and define a RAM area with a size of >= 256 byte.

Typical applications
Refer to chapter Fast GPIO bug on page 105 for an example.
Syntax

map indirectread <StartAddressOfArea>-<EndAddress>

Example

map indirectread 0x3fffc000-0x3fffcfff

map ram

This command should be used to define an area in RAM of the target device. The area must be 256-byte aligned. The
data which was located in the defined area will not be corrupted. Data which resides in the defined RAM area is saved
and will be restored if necessary. This command has to be executed before map indirectread will be called.

Typical applications
Refer to chapter Fast GPIO bug on page 105 for an example.
Syntax

map ram <StartAddressOfArea>-<EndAddressOfArea>

Example

map ram 0x40000000-0x40003fff;

map reset
This command restores the default memory mapping, which means all memory accesses are permitted.
Typical applications

Used with other "map" commands to return to the default values. The map reset command should be called before any
other "map" command is called.

Syntax

map reset

Example

map reset

SetAllowSimulation

This command can be used to enable or disable the instruction set simulation. By default the instruction set simulation
is enabled.

Syntax

SetAllowSimulation = 0 | 1

Example

SetAllowSimulation 1 // Enables instruction set simulation

SetCheckModeAfterRead

This command is used to enable or disable the verification of the CPSR (current processor status register) after each
read operation. By default this check is enabled. However this can cause problems with some CPUs (e.g. if invalid
CPSR values are returned). Please note that if this check is turned off (SetCheckModeAfterRead = 0), the success of
read operations cannot be verified anymore and possible data aborts are not recognized.

IAR J-Link and IAR }J-Trace
78  User Guide J-Link_J-TraceARM-5



Working with }J-Link and }J-Trace

Typical applications

This verification of the CPSR can cause problems with some CPUs (e.g. if invalid CPSR values are returned). Note that
if this check is turned off (SetCheckModeAfterRead = 0), the success of read operations cannot be verified anymore
and possible data aborts are not recognized.

Syntax

SetCheckModeAfterRead

o] 1
Example

SetCheckModeAfterRead = 0

SetResetPulselen

This command defines the length of the RESET pulse in milliseconds. The default for the RESET pulse length is 20
milliseconds.

Syntax

SetResetPulselLen = <value>

Example

SetResetPulselLen = 50

SetResetType

This command selects the reset startegy which shall be used by J-Link, to reset the device. The value which is used for
this command is analog to the reset type which shall be selected. For a list of all reset types which are available, please
refer to Reset strategies on page 64. Please note that there different reset strategies for ARM 7/9 and Cortex-M devices.

Syntax

SetResetType = <value>

Example
SetResetType = 0 // Selects reset strategy type 0: normal
SetRestartOnClose

This command specifies whether the J-Link restarts target execution on close. The default is to restart target execution.
This can be disabled by using this command.

Syntax

SetRestartOnClose

01

Example

SetRestartOnClose = 1

SetDbgPowerDownOnClose
When using this command, the debug unit of the target CPU is powered-down when the debug session is closed.

Note: This command works only for Cortex-M3 devices

Typical applications

This feature is useful to reduce the power consumption of the CPU when no debug session is active.
Syntax

SetDbgPowerDownOnClose = <value>

Example

SetDbgPowerDownOnClose
SetDbgPowerDownOnClose

1 // Enables debug power-down on close.
0 // Disables debug power-down on close.

J-Link_J-TraceARM-5



80

SetSysPowerDownOnldle

When using this command, the target CPU is powered-down when no transmission between J-Link and the target CPU
was performed for a specific time. When the next command is given, the CPU is powered-up.

Note:This command works only for Cortex-M3 devices.
Typical applications
This feature is useful to reduce the power consumption of the CPU.

Syntax

SetSysPowerDownOnIdle = <value>
Note:A 0 for <value> disables the power-down on idle functionality.

Example

SetSysPowerDownOnIdle = 10; // The target CPU is powered-down when there is no
// transmission between J-Link and target CPU for at least 10ms

SupplyPower

This command activates power supply over pin 19 of the JTAG connector. The J-Link has the V5 supply over pin 19
activated by default.

Typical applications

This feature is useful for some eval boards that can be powered over the JTAG connector.

Syntax

SupplyPower = 0 | 1

Example

SupplyPower = 1
SupplyPowerDefault

This command activates power supply over pin 19 of the JTAG connector permanently. The J-Link has the V5 supply
over pin 19 activated by default.

Typical applications

This feature is useful for some eval boards that can be powered over the JTAG connector.

Syntax
SupplyPowerDefault = 0 | 1
Example
SupplyPowerDefault = 1

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Working with J-Link and J-Trace —e

USING COMMAND STRINGS

J-Link Commander

The J-Link command strings can be tested with the J-Link Commander. Use the command exec supplemented by one
of the command strings.

Link ARM V3 58¢c IH[=] B3

SEGGER J-Link Commander U3.58c <’'7’ for help>

Compiled Jan 12 2887 12:54:38

DLL version U3.58c. compiled Jan 12 2887 12:54:35
Firmware : J_L%Ek compiled Feb B9 2887 19:59:46 ARM Rev.5

UTarget = 3.3130
JTAG speed: 38 kHz
Found 1 JTAG device,. Total IRLen = 4:
Id of device H#8: Bx4F1FAFAF
Found ARM with core Id Bx4F1FBFBF (ARM?7>
J-Link>exec map reset
g—k@nhgexec map exclude Bx1B8BBBBE—-B:3FFFFFFF
—Link>_

Example

exec SupplyPower = 1
exec map reset
exec map exclude 0x10000000-0x3FFFFFFF

IAR Embedded Workbench

The J-Link command strings can be supplied using the C-SPY debugger of the IAR Embedded Workbench. Open the
Project options dialog box and select Debugger.

Options for node "Project™

Category: Factary Settings

General Options

C/C++ Compiler Setup l Download] Extra Dptions] F'Iugins]
Azzembler
Custamn Build Diriver ¥ Bunto
Build &ctions - -
. J-LinkA)-Trace = mair
Linker
: Debugger
Simulator Setup macros
Angel S
14R ROM-maritor I Use macro file
J-Linkd)-Trace
LI FTDI | —J
Macraigor Device description file
RDI .
Thitd-Patty Driver [ Overide default

| B

()8 | Cancel

J-Link_J-TraceARM-5 8l



82

On the Extra Options page, select Use command line options.
Enter --jlink_exec_command "<CommandLineOption>" in the textfield, as shown in the screenshot below. If
more than one command should be used separate the commands with semicolon.

Options for node "Project™ E

Category: Factary Settings |

General Options
C/C++ Compiler Setup I Download — Extra Options | F'Iuginsl
Aszzembler .

Cusztomn Build
Build &ctions
Linker
Debuager ~jlink_exec_command “map ram 0x40000000-0<400036; map indire;l

Simulator

Angel

14R R OM-monitor

J-Linkd)-Trace

LI FTDI

M acraigor

RDI

Third-Party Driver

LCommand line options: [one per line]

|

()8 | Cancel |

Switching off CPU clock during debug

We recommend not to switch off CPU clock during debug. However, if you do, you should consider the following:
Non-synthesizable cores (ARM7TDMI, ARM9TDMI, ARM920, etc.)

With these cores, the TAP controller uses the clock signal provided by the emulator, which means the TAP controller
and ICE-Breaker continue to be accessible even if the CPU has no clock.

Therefore, switching off CPU clock during debug is normally possible if the CPU clock is periodically (typically using
a regular timer interrupt) switched on every few ms for at least a few us. In this case, the CPU will stop at the first
instruction in the ISR (typically at address 0x18).

Synthesizable cores (ARM7TDMI-S, ARM9E-S, etc.)

With these cores, the clock input of the TAP controller is connected to the output of a three-stage synchronizer, which
is fed by clock signal provided by the emulator, which means that the TAP controller and ICE-Breaker are not
accessible if the CPU has no clock.

If the RTCK signal is provided, adaptive clocking function can be used to synchronize the JTAG clock (provided by
the emulator) to the processor clock. This way, the ITAG clock is stopped if the CPU clock is switched off.

If adaptive clocking is used, switching off CPU clock during debug is normally possible if the CPU clock is
periodically (typically using a regular timer interrupt) switched on every few ms for at least a few us. In this case, the
CPU will stop at the first instruction in the ISR (typically at address 0x18).

Cache handling

Most ARM systems with external memory have at least one cache. Typically, ARM7 systems with external memory
come with a unified cache, which is used for both code and data. Most ARM9 systems with external memory come
with separate caches for the instruction bus (I-Cache) and data bus (D-Cache) due to the hardware architecture.

CACHE COHERENCY

When debugging or otherwise working with a system with processor with cache, it is important to maintain the
cache(s) and main memory coherent. This is easy in systems with a unified cache and becomes increasingly difficult
in systems with hardware architecture. A write buffer and a D-Cache configured in write-back mode can further
complicate the problem.

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Working with }J-Link and }J-Trace

ARMD chips have no hardware to keep the caches coherent, so that this is the responsibility of the software.

CACHE CLEAN AREA

J-Link / J-Trace handles cache cleaning directly through JTAG commands. Unlike other emulators, it does not have to
download code to the target system. This makes setting up J-Link / J-Trace easier. Therefore, a cache clean area is not
required.

CACHE HANDLING OF ARM7 CORES

Because ARM7 cores have a unified cache, there is no need to handle the caches during debug.

CACHE HANDLING OF ARM9 CORES

ARMDO cores with cache require J-Link / J-Trace to handle the caches during debug. If the processor enters debug state
with caches enabled, J-Link / J-Trace does the following:

When entering debug state
J-Link / J-Trace performs the following:

e it stores the current write behavior for the D-Cache

e it selects write-through behavior for the D-Cache.
When leaving debug state
J-Link / J-Trace performs the following:

e it restores the stored write behavior for the D-Cache
e it invalidates the D-Cache.

Note:The implementation of the cache handling is different for different cores.
However, the cache is handled correctly for all supported ARM9 cores.

J-Link_J-TraceARM-5

83



IAR J-Link and IAR }J-Trace
84  User Guide J-Link_J-TraceARM-5



Flash download

This chapter describes how the flash download feature of the DLL can be used.

Introduction

The J-Link DLL comes with a lot of flash loaders that allow direct programming of internal flash memory for popular
microcontrollers. Moreover, the J-Link DLL also allows programming of CFI-compliant external NOR flash memory.
The flash download feature of the J-Link DLL does not require an extra license and can be used free of charge.

Why should | use the J-Link flash download feature?
Being able to download code directly into flash from the debugger or integrated IDE

significantly shortens the turn-around times when testing software. The flash download feature of J-Link is very
efficient and allows fast flash programming. For example, if a debugger splits the download image into several pieces,
the flash download software will collect the individual parts and perform the actual flash programming right before
program execution. This avoids repeated flash programming. Once the setup of flash download is completed.
Moreover, the J-Link flash loaders make flash behave as RAM. This means that the debugger only needs to select the
correct device which enables the J-Link DLL to automatically activate the correct flash loader if the debugger writes
to a specific memory address.

This also makes it very easy for debugger vendors to make use of the flash download feature because almost no extra
work is necessary on the debugger side since the debugger has not to differ between memory writes to RAM and
memory writes to flash.

Licensing

No extra license required. The flash download feature can be used free of charge.

Supported devices

J-Link supports download into the internal flash of a large number of microcontrollers. You can always find the latest
list of supported devices on Segger’s website:

http://www.segger.com/jlink_supported devices.html

In general, J-Link can be used with any ARM7/9/11, Cortex-M0/M1/M3/M4 and Cortex-A5/A8/R4 core even if it does
not provide internal flash.

Furthermore, flash download is also available for all CFI-compliant external NOR-flash devices.

J-Link_J-TraceARM-5



Setup

IAR EMBEDDED WORKBENCH
Using the J-Link flash download feature in IAR EWARM is quite simple:

First, choose the right device in the project settings if not already done. The device settings can be found at Project-
>Options->General Options->Target.

Options for node “at91sam7s-ek™ E
Category:

el 5
CiC++ Compiler
Assembler

Qukput Corwverker Target | Dutputl Library Eonfigurationl Library Options | MISRA-C

Customn Build .
) ) — Processor wariant
Build Actions

Linker & Core IAHM?TDMI 'l

Debugger
Simulator % Device IAtmeI at91 zam7 =256 Ek_l
Angel
GDE Server
IAB ROM-manitar — Endian mode F
J-Linkj1-Trace

LMI FTOI @ Litle I Mohe - l

Macraigor e Big
RDI * BEZZ
Third-Party Driver ¢ BES

Cancel |

To use the J-Link flash loaders, the IAR flash loader has to be disabled. To disable the IAR flash loader, the checkbox
Use flash loader(s) at Project->Options->Debugger->Download has to be disabled, as shown below.

Options for node “at91sam7s-ek™ E

Categony: Factory Settings |

General Options
CiC++ Compiler
Assembler

Qutput Corverter Setup  Download | Extra Options I Flugins I
Custom Build ™ Attach to program
Build Actions
Linker v &
™ Suppress dowrload
Sirmulator
angel ™ Use flash loader(z]
GDE Server

IAR ROM-monitor 0100000, [default). Edit |

J-Linkj1-Trace
LMI FTDT
Macraigor

ROI

Third-Party Driver

J-LINK COMMANDER

To configure J-Link Commander for flash download simply select the connected device by typing in the following
command:

exec device = <DeviceName>

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Flash download

<DeviceName> is the name of the device for which download into internal flash memory shall be enabled. For a list

of supported devices, please refer to Supported devices on page 85.

JTAG speed: 188 kH=
J-Link>speed 4088
JTR@ speed: 4808 kHz

J-Link>h
= @AR1AA7?A,. CPSR = 2088AAYF (System mode, THUMB FIQ dis.>
AAEEEEE1,. Rl = BB282D6H,. R2 = ABBBBEE1,. R3 = B818198F
AAAEAE1F4,. RS = AABABEEEE,. R6 = BBB25992, R? = BB282CE

a
8 -AARAREAA. R? -AROARAE0. R10-AAAE0OOA. Ril -0OAAEROA. R12 -A00BBA5F

B201FD8. Ri4-08182495

AE0AARA. R? -DAARAROE. R1A-AA0OAAAA. Ril -APAAOGAAA. R12 -DAAREOO6

A202AAA,. R14-AAAAARAA,. SPSR=-FABAAA3G6
AARAAAA,. R14-AA1AA7AA,. SPSR=2000AAT7F
AARAAAA,. R14-AAAAARRA,. SPSR=-FABAAAF?
1 A20284@,. R14=-AA1AA6GDD, SPSR=0POAAATF
R13=-AAARAAAA. R14-PAAAAARA. SPSR=-EABAARAT2
J-Link>exec device = AT?1SAM7S256
Info: Device "AT?1SAM78256" selected (256 KB flash. 64 KB RAM>.
J-Link>loadbin C:\Temp:test.bin.Bx1B00688
Loading binary file... LGENIempstest.binl
Writing hin data into target memory (@ BxB01006860 .

=101 x|

Info: J-Link: Flash download: Flash programming performed for 1 range (16384 hyt

es )

Info: J-Link: Flash download: Total time needed: B.844s (Prepare: B.116s,. Compar|

e: @.828s, Program: B.654s, Uerify: B.815s, Restore: B.837s)
J-Link>

Setup for CFl flash

The setup for download into CFI-compliant memory is different from the one for internal flash.

IAR EMBEDDED WORKBENCH

Using the J-Link flash download feature with IAR Embedded Workbench is quite simple:

First, start the debug session and open the J-Link Control Panel. In the tab "Settings" you will find the location of the

settings file.

.3, SEGGER J-Link ¥4.15r (beta) - Control panel I B3

General  Seftings | Breakpointsl Lag I MNET I CPU Hegsl Target Powerl Sty I Devicel EmLLI_’|
Log file ¥ Ovenide

“E:\JLink.Iog | _Clear |
Seftings file | Dveride

“E:\Program Files%SEGGER I LinkARM_415rDefault. ini | Save |—‘

Script file
“Not specified _I ‘

M Flash download M Flash breakpoint

. & Auto | License found
& On [V Skip download on CRC match © On T e et diig

 0Off [ erify download  of e
IEnabIed, download pending: O bytes IEnabIed

[ Ovenide device selection

¥ &llows caching of flash contents (On)
W Allow instruction set simulation
I~ Overmide memany map IAHDW j

Modity breakpoints during execution

|Ready |JLINK_GetSpeed (Done) |D.243 sec, in 36 calls 4

Close the debug session and open the settings file with a text editor. Add the following lines to the file:

[CFI]
CFISize = <FlashSize>
CFIAddr = <FlashAddr>

[GENERAL]
WorkRAMSize = <RAMSize>
WorkRAMAddr = <RAMAddr>

J-Link_J-TraceARM-5

—e

87



After this the file should look similar to the sample in the following screenshot.

& Default.ini - Motepad =] 3

File Edit Format Help

[BREAKPOINTS] =]
showInfowin = 1

Enablerlashep = 2

EPCDUringExecution = 0

[CFI]
ICFISize = Ox400000
CEIAaddr = Ox1000000
[cPU]

Cverridememmap = 0
allowsimulation = 1
ScriptFile=""

[FLASH]
skipProgoncRrCMatch = 1
wverifybownload = 1
allowCaching = 1
EnableFlashbL = 2
override = 0
Device="ADUCTO20x62"

[GENERAL]

orkRramMsize = 0x4000

orkrapaddr = 0x20000

[swo]

SwoLogFile="" =l

IAR J-Link and IAR }J-Trace
88 User Guide J-Link_J-TraceARM-5



Flash download

Save the settings file and restart the debug session. Open the J-Link Control Panel and verify that the "MemMap" tab

shows the new settings for CFI flash and work RAM area.

L;:-.'h SEGGER J-Link ¥4.15r (beta} - Control panel

Log I MET I CPU Hegsl Target Powerl Sty I Devicel Emulator  Memtap | Performancel A I L4
r— CFl Flash Wwiork R
Canfig | 010000000 - Cx103FFFFF | | | Corfig [0x00200000 - 000203FFF |
Info In.a.
Memory map
Fange | Size | Type | E xplanation |
(0x00000000 - O<FFFFFFFF 4GB M Mormal
Ready JLINK_ETM_IsPresent {Done) 0,603 sec, in 37 calls 4

The following command sequence shows how to perform a download into external, CFI-compliant, parallel NOR-Flash

on a ST STM32F103ZE using J-Link commander:

r
speed 1000

exec setcfiflash 0x64000000 - Ox64FFFFFF
exec setworkram 0x20000000 - O0x2000FFFF

wd 0x40021014, 0x00000114 // RCC_AHBENR, FSMC clock enable

wd 0x40021018, 0x000001FD // GPIOD~G clock enable

wd 0x40011400, O0xB4BB44BB // GPIOD low config, NOE, NWE => Output, NWAIT => Input
w4 0x40011404, OxBBBBBBBB // GPIOD high config, Al16-A18

wd 0x40011800, OxBBBBBBBB // GPIOE low config, A19-A23

w4 0x40011804, OxBBBBBBBB // GPIOE high config, D5-D12

w4 0x40011C00, Ox44BBBBBB // GPIOF low config, A0-AS5

w4 0x40011C04, 0xBBBB4444 // GPIOF high config, A6-A9

wd 0x40012000, O0x44BBBBBB // GPIOG low config, A10-Al5

w4 0x40012004, O0x444B4BB4 // GPIOG high config, NE2 => output

w4 0xA0000008, 0x00001059 // CS control reg 2, 16-bit, write enable, Type: NOR flash
w4 0xA000000C, 0x10000505 // CS2 timing reg (read access)

w4 0xA000010C, 0x10000505 // CS2 timing reg (write access)

speed 4000

mem 0x64000000,100

loadbin C:\STMB672_STM32F103ZE_TestBlinky.bin, 0x64000000

mem 0x64000000),

100

Using the DLL flash loaders in custom applications

The J-Link DLL flash loaders make flash behave as RAM from a user perspective, since flash programming is triggered
by simply calling the J-Link API functions for memory reading / writing. For more information about how to setup the
J-Link API for flash programming please refer to UM08002 J-Link SDK documentation (available for SDK customers

only).

J-Link_J-TraceARM-5

—e

89



IAR J-Link and IAR }J-Trace
90 User Guide J-Link_J-TraceARM-5



Flash breakpoints

This chapter describes how the flash breakpoints feature of the DLL can be used.

Introduction

The J-Link DLL supports a feature called flash breakpoints which allows the user to set an unlimited number of
breakpoints in flash memory rather than only being able to use the hardware breakpoints of the device. Usually when
using hardware breakpoints only, a maximum of 2 (ARM 7/9/11) to 8 (Cortex-A/R) breakpoints can be set. The flash
memory can be the internal flash memory of a supported microcontroller or external CFI-compliant flash memory. In
the following sections the setup for different debuggers to use the flash breakpoints feature is explained.

How do breakpoints work?

There are basically 2 types of breakpoints in a computer system: hardware breakpoints and software breakpoints.
Hardware breakpoints require a dedicate hardware unit for every breakpoint. In other words, the hardware dictates how
many hardware breakpoints can be set simultaneously. ARM 7/9 cores have 2 breakpoint units (called "watchpoint
units" in ARM's documentation), allowing 2 hardware breakpoints to be set. Hardware breakpoints do not require
modification of the program code. Software breakpoints are different: The debugger modifies the program and replaces
the breakpointed instruction with a special value. Additional software breakpoints do not require additional hardware
units in the processor, since simply more instructions are replaced. This is a standard procedure that most debuggers
are capable of, however, this usually requires the program to be located in RAM.

What is special about software breakpoints in flash?

Flash breakpoints allows setting of an unlimited number of breakpoints even if the user application is not located in
RAM. On modern microcontrollers this is the standard scenario because on most microcontrollers the internal RAM is
not big enough to hold the complete application. When replacing instructions in flash memory this requires re-
programming of the flash which takes much more time than simply replacing a instruction when debugging in RAM.
The J-Link flash breakpoints feature is highly optimized for fast flash programming speed and in combination with the
instruction set simulation only re-programs flash is absolutely necessary which makes debugging in flash using flash
breakpoints almost as flawless as debugging in RAM.

What performance can | expect?

Flash algorithm, specially designed for this purpose, sets and clears flash breakpoints extremely fast; on
microcontrollers with fast flash the difference between software breakpoints in RAM and flash is hardly noticeable.

How is this performance achieved?

We have put a lot of effort in making flash breakpoints really usable and convenient. Flash sectors are programmed
only when necessary; this is usually the moment execution of the target program is started. A lot of times, more then
one breakpoint is located in the same flash sector, which allows programming multiple breakpoints by programming
just a single sector. The contents of program memory are cached, avoiding time consuming reading of the flash sectors.
A smart combination of soft ware and hardware breakpoints allows us to use hardware breakpoints a lot of times,
especially when the debugger is source level-stepping, avoiding re-programming the flash in these situations. A built-
in instruction set simulator further reduces the number of flash operations which need to be performed. This minimizes
delays for the user, while maximizing the life time of the flash. All resources of the ARM microcontroller are available
to the application program, no memory is lost for debugging.

Licensing

In order to use the flash breakpoints feature a separate license is necessary for each J-Link. For some devices J-Link
comes with a device-based license and some J-Link models also come with a full license for flash breakpoints but the
normal J-Link comes without any licenses. For more information about licensing itself and which devices have a
device-based license, please refer to Licensing on page 25.

J-Link_J-TraceARM-5



24H FLASH BREAKPOINT TRIAL LICENSE

In general, SEGGER offers free 30-days trial licenses for flash breakpoints upon request. The J-Link DLL also comes
with a special feature that allows the user to test the flash breakpoints feature for 24 hours without the need to request
a trial license explicitly from SEGGER via E-Mail. This especially is useful for users who simply want to do some
short term testing with the flash breakpoints feature without needing to wait for a requested trial license key. This
special trial license can only activated once per emulator. If the user sets breakpoints during the debug session which
would require a flash breakpoint license and no license is found, the DLL offers the user to activate the 24 hour trial
license for the connected emulator.

J-Link ¥x.3xx Dut of breakpoints [ <]

The debugger iz tiving to zet a breakpoint point at address 0x00001FIC,
! but neither hardware nor software breakpoints are available.

J-Link supports an unlimited number of breakpoints in flash memary.

Thiz feature requires an additional license from SEGGER, wwww. segger. com.
It allowes zetting thiz and other breakpoints in flazh memory and provides

a significantly improved debugging experience.

Free tial licenses are available. For a license, pleasze contact infof@segger. com.
Foor mare information, visit http: /4w, segger. com/cms/link-flash-break points. html

‘f'ou can activate a free one-time 24h trial license for this emulatar.
Thiz will enable an unlimited number of breakpoints in flash memary for the next 24 hours.

Do you want to activate the free trial license now 7

™ Da not shaw this message again for today

Supported devices

J-Link supports flash breakpoints for a large number of microcontrollers. You can always find the latest list of
supported devices on Segger’s website:

http://www.segger.com/jlink_supported_devices.html

In general, J-Link can be used with any ARM7/9/11, Cortex-M0/M1/M3/M4 and Cortex-A5/A8/R4 core even if it does
not provide internal flash.

Furthermore, flash breakpoints are also available for all CFI compliant external NOR-flash devices.

IAR J-Link and IAR }J-Trace
92  User Guide J-Link_J-TraceARM-5



Flash breakpoints

Setup
SETUP

In IAR Embedded Workbench, flash breakpoints work if a license for flash breakpoints is present. No additional setup
is required. The flash breakpoint feature is available for internal flashes and for external CFI-flash. For more
information about how to setup IAR Embedded Workbench for flash download, please refer to Setup on page 86. If

flash breakpoints are available can be verified using the J-Link control panel:

L;:-.'h SEGGER J-Link ¥4.35g {beta) - Control panel

General  Seftings | Breakpointsl Lag I MNET I CPU Hegsl Target Powerl Sty I HAW'Trac:eI A I L4

= B3

Log file
“E:\JLink.Iog

o verride“

Clear |
Settings file | Gveride
“E:\Program Filez%SEGGER I LinkARM_\V435g4Default.ini —‘
Script file
“Not specified _I ‘

B Flash download

M Flash breakpoints

& On Compare | Using fastest method j & Auto | License found

.  On V' Show info window during
0 Yerify | Programmed sectors, fastest methotj - 0K program
IEnabIed, download pending: O bytes IEnabIed

[ Ovenide device selection

[V Allow caching of flash contents [On)
¥ Allow imstruction s=t simulation

™| @weride memaony map

Modity breakpoints during execution
| allow |

|Ready JLINK_HasError {Done)

1.110 sec. in 14 calls 4

J-Link_J-TraceARM-5

—e

93



IAR J-Link and IAR }J-Trace
94  User Guide J-Link_J-TraceARM-5



Device specifics

This chapter describes for which devices some special handling is necessary to use them with J-Link.

Analog Devices
J-Link has been tested with the following MCUs from Analog Devices:

AD7160
ADuC7020x62
ADuC7021x32
ADuC7021x62
ADuC7022x32
ADuC7022x62
ADuC7024x62
ADuC7025x32
ADuC7025x62
ADuC7026x62
ADuC7027x62
ADuC7028x62
ADuC7030
ADuC7031
ADuC7032
ADuC7033
ADuC7034
ADuC7036
ADuC7038
ADuC7039
ADuC7060
ADuC7061
ADuC7062
ADuC7128
ADuC7129
ADuC7229x126
ADuCRF02
ADuCRF101

ADUC7XXX

Software reset

A special reset strategy has been implemented for Analog Devices ADuC7xxx MCUs. This special reset strategy is a
software reset. "Software reset" means basically RESET pin is used to perform the reset, the reset is initiated by writing
special function registers via software.

The software reset for Analog Devices ADuC7xxxx executes the following sequence:

e The CPU is halted

o A software reset sequence is downloaded to RAM

J-Link_J-TraceARM-5



e A breakpoint at address 0 is set

e The software reset sequence is executed.

It is recommended to use this reset strategy. This sequence performs a reset of CPU and peripherals and halts the CPU
before executing instructions of the user program. It is the recommended reset sequence for Analog Devices
ADuC7xxx MCUs and works with these devices only.

This information is applicable to the following devices:
Analog ADuC7020x62

Analog ADuC7021x32

Analog ADuC7021x62

Analog ADuC7022x32

Analog ADuC7022x62

Analog ADuC7024x62

Analog ADuC7025x32

Analog ADuC7025x62

Analog ADuC7026x62

Analog ADuC7027x62

Analog ADuC7030

Analog ADuC7031

Analog ADuC7032

Analog ADuC7033

Analog ADuC7128

Analog ADuC7129

Analog ADuC7229x126

ATMEL

J-Link has been tested with the following ATMEL devices:

AT9ISAM3A2C
AT91SAM3A4C
AT91SAM3ASC
AT91SAM3NIA
AT91SAM3N1B
AT91SAM3NIC
AT91SAM3N2A
AT91SAM3N2B
AT9ISAM3N2C
AT91SAM3N4A
AT91SAM3N4B
AT91SAM3N4C
AT91SAM3S1A
AT91SAM3S1B

AT91SAM3SIC

AT91SAM3S2A
AT91SAM3S2B

AT91SAM3S2C

AT91SAM3S4A
AT91SAM3S4B

AT91SAM3S4C

IAR J-Link and IAR }J-Trace
96  User Guide J-Link_J-TraceARM-5



Device specifics

AT9ISAM3UIC
AT91SAM3U2C
AT91SAM3U4C
AT91SAM3UIE
AT91SAM3U2E
AT91SAM3U4E
AT91SAM3X2C
AT91SAM3X2E
ATI91SAM3X2G
AT91SAM3X2H
AT91SAM3X4C
AT91SAM3X4E
AT91SAM3X4G
AT91SAM3X4H
AT91SAM3XS8C
AT91SAM3X8E
AT91SAM3X8G
AT91SAM3X8H
AT91SAMT7A3
AT91SAM7L64
AT91SAMTLI128
AT91SAM7S16
AT91SAM7S161
AT91SAM7S32
AT91SAM7S321
AT91SAM7S64
AT91SAM7S128
AT91SAM7S256
AT91SAM7S512
AT91SAMT7SE32
AT91SAM7SE256
AT91SAM7SES512
AT9ISAMT7X128
AT91SAM7X256
AT9ISAMT7X512
AT9ISAM7XC128
AT9ISAMT7XC256
AT9ISAMT7XC512
AT91SAMOXE128
AT91SAMIXE256

AT91SAM7

Reset strategy

The reset pin of the device is per default disabled. This means that the reset strategies which rely on the reset pin (low
pulse on reset) do not work per default. For this reason a special reset strategy has been made available.

Itis recommended to use this reset strategy. This special reset strategy resets the peripherals by writing to the RSTC_CR
register. Resetting the peripherals puts all peripherals in the defined reset state. This includes memory mapping register,
which means that after reset flash is mapped to address 0. It is also possible to achieve the same effect by writing 0x4
to the RSTC_CR register located at address Oxfffffd00.

J-Link_J-TraceARM-5

—e

97



98

This information is applicable to the following devices:
AT91SAMTS (all devices)

AT91SAMT7SE (all devices)

AT91SAM7X (all devices)

AT91SAM7XC (all devices)

e AT91SAMT7A (all devices)

Memory mapping

Either flash or RAM can be mapped to address 0. After reset flash is mapped to address 0. In order to
majlink_supported_devices.html RAM to address O, a 1 can be written to the RSTC_CR register. Unfortunately, this
remap register is a toggle register, which switches between RAM and flash with every time bit zero is written.

In order to achieve a defined mapping, there are two options:
Use the software reset described above.
Test if RAM is located at 0 using multiple read/write operations and testing the results.

Clearly 1. is the easiest solution and is recommended.

This information is applicable to the following devices:
o AT91SAMYTS (all devices)

e AT91SAMTSE (all devices)

o AT91SAM7X (all devices)

e AT9ISAM7TXC (all devices)

o AT91SAMT7A (all devices)

Recommended init sequence

In order to work with an ATMEL AT91SAMY7 device, it has to be initialized. The following paragraph describes the
steps of an init sequence. An example for IAR Workbench is given.

Set JTAG speed to 30kHz

Reset target

Perform peripheral reset

Disable watchdog

Initialize PLL

Use full JTAG speed

IAR J-Link and IAR }J-Trace
User Guide J-Link_J-TraceARM-5



Device specifics —e

Example

/*******************************************************************
*

* _Init()
*/
_Init() {
__emulatorSpeed(30000) ; // Set JTAG speed to 30 kHz
__writeMemory32 (0xA5000004, OXFFFFFD0OO, "Memory") ; // Perform peripheral reset
__sleep(20000);
__writeMemory32 (0x00008000, 0XxFFFFFD44, "Memory") ; // Disable Watchdog
__sleep(20000);
__writeMemory32 (0x00000601, 0OXFFFFFC20, "Memory") ; // PLL
__sleep(20000);
__writeMemory32 (0x10191c05, 0OXFFFFFC2C, "Memory") ; // PLL
__sleep(20000);
__writeMemory32 (0x00000007, 0XxFFFFFC30, "Memory") ; // PLL
__sleep(20000);
__writeMemory32 (0x002£0100, OXFFFFFF60, "Memory") ; // Set 1 wait state for
_ _sleep(20000); // flash (2 cycles)
__emulatorSpeed(12000000) ; // Use full JTAG speed
}

/*******************************************************************
*
* execUserReset ()
*/
execUserReset () {
__message "execUserReset()";
_Init();
}

/*******************************************************************
*

* execUserPreload()

*/

execUserPreload () {
__message "execUserPreload()";
_Init();

}

AT91SAM9

JTAG settings

We recommend using adaptive clocking.

This information is applicable to the following devices:
AT91RM9200

AT91SAM9260

AT91SAM9261

AT91SAM9262

AT91SAM9263

DSPGroup

J-Link has been tested with the following DSPGroup devices:
e DA5S6KLF

Currently, there are no specifics for these devices.

Ember

J-Link has been tested with the following Ember devices:

e EM351

J-Link_J-TraceARM-5 99



e EM357

Currently, there are no specifics for these devices.

Energy Micro

J-Link has been tested with the following Energy Micro devices:

EFM32G200F16
EFM32G200F32
EFM32G200F64
EFM32G210F128
EFM32G230F32
EFM32G230F64
EFM32G230F128
EFM32G280F32
EFM32G280F64
EFM32G280F128
EFM32G290F32
EFM32G290F64
EFM32G290F128
EFM32G840F32
EFM32G840F64
EFM32G840F128
EFM32G880F32
EFM32G880F64
EFM32G880F128
EFM32G890F32
EFM32G890F64
EFM32G890F128
EFM32TG108F4
EFM32TG108F8
EFM32TG108F16
EFM32TG108F32
EFM32TG110F4
EFM32TG110F8
EFM32TG110F16
EFM32TG110F32
EFM32TG210F8
EFM32TG210F16
EFM32TG210F32
EFM32TG230F8
EFM32TG230F16
EFM32TG230F32
EFM32TG840F8
EFM32TG840F16
EFM32TG840F32

Currently, there are no specifics for these devices.

IAR J-Link and IAR }J-Trace
100 User Guide J-Link_J-TraceARM-5



Device specifics

Freescale

J-Link has been tested with the following Freescale devices:

MAC7101
MACT7106
MAC7111
MACT7112
MAC7116
MACT7121
MAC7122
MACT7126
MAC7131
MAC7136
MAC7141
MACT7142
MK10DN512
MK10DX128
MK10DX256
MK20DN512
MK20DX128
MK20DX256
MK30DN512
MK30DX128
MK30DX256
MK40N512
MK40X128
MK40X256
MKS0DNS512
MKS50DX256
MKS0DNS512
MKS50DX256
MKS51DX256
MKS51DN512
MKS51DX256
MKS51DN512
MKS51DN256
MKS51DN512
MKS52DN512
MKS53DN512
MKS53DX256
MK60N256
MK60N512
MK60X256

J-Link_J-TraceARM-5

—e

101



KINETIS FAMILY

UNLOCKING

If your device has been locked by setting the MCU security status to "secure”, and mass erase via debug interface is
not disabled, J-Link is able to unlock your Kinetis K40/K60 device. The device can be unlocked by using the "unlock"
command in J-Link Commander.

For more information regarding the MCU security status of the Kinetis devices, please refer to the user manual of your
device.

TRACING

The first silicon of the Kinetis devices did not match the data setup and hold times which are necessary for ETM-Trace.
On these devices, a low drive strength should be configured for the trace clock pin in order to match the timing
requirements.

On later silicons, this has been corrected.

Fujitsu

J-Link has been tested with the following Fujitsu devices:

MB9AF102N
MB9AF102R
MB9AF104N
MB9AF104R
MB9BF104N
MB9BF104R
MBO9BF105N
MB9BF105R
MB9BF106N
MB9BF106R
MB9BF304N
MB9BF304R
MBO9BF305N
MB9BF305R
MB9BF306N
MB9BF306R
MB9BF404N
MB9BF404R
MB9BF405N
MB9BF405R
MB9BF406N
MB9BF406R
MBO9BF504N
MB9BF504R
MBO9BF505N
MB9BF505R
MBO9BF506N
MBI9BF506R

Currently, there are no specifics for these devices.

IAR J-Link and IAR }J-Trace
102 User Guide J-Link_J-TraceARM-5



Device specifics

Itron

J-Link has been tested with the following Itron devices:

e TRIFECTA

Currently, there are no specifics for these devices.

Luminary Micro

J-Link has been tested with the following Luminary Micro devices:

LM3S101
LM3S102
LM3S301
LM3S310
LM3S315
LM3S316
LM3S317
LM3S328
LM3S601
LM3S610
LM3S611
LM3S612
LM3S613
LM3S615
LM3S617
LM3S618
LM3S628
LM3S801
LM3S811
LM3S812
LM3S815
LM3S817
LM3S818
LM3S828
LM3S2110
LM3S2139
LM3S2410
LM3S2412
LM3S2432
LM3S2533
LM3S2620
LM3S2637
LM3S2651
LM3S2730
LM3S2739
LM3S2939
LM3S2948
LM3S2950
LM352965

J-Link_J-TraceARM-5

—e

103



LM3S6100
LM3S56110
LM3S6420
LM356422
LM3S6432
LM3S6610
LM3S6633
LM3S6637
LM3S6730
LM3S56938
LM3S6952
LM3S6965

UNLOCKING LM3SXXX DEVICES

If your device has been "locked" accidentially (e.g. by bad application code in flash which mis-configures the PLL)
and J-Link can not identify it anymore, there is a special unlock sequence which erases the flash memory of the device,
even if it can not be identified. This unlock sequence can be send to the target, by using the "unlock" comnmand in J-
Link Commander.

NXP

J-Link has been tested with the following NXP devices:

LPCI111
LPCI1113
LPCI1311
LPC1313
LPC1342
LPC1343
LPC1751
LPC1751
LPC1752
LPC1754
LPC1756
LPC1758
LPC1764
LPC1765
LPC1766
LPC1768
LPC2101
LPC2102
LPC2103
LPC2104
LPC2105
LPC2106
LPC2109
LPC2114
LPC2119
LPC2124
LPC2129

IAR J-Link and IAR }J-Trace
104 User Guide J-Link_J-TraceARM-5



Device specifics —e

LPC2131
LPC2132
LPC2134
LPC2136
LPC2138
LPC2141
LPC2142
LPC2144
LPC2146
LPC2148
LPC2194
LPC2212
LPC2214
LPC2292
LPC2294
LPC2364
LPC2366
LPC2368
LPC2378
LPC2468
LPC2478
LPC2880
LPC2888
LPC2917
LPC2919
LPC2927
LPC2929
PCF87750
SJA2010
SJA2510

LPC ARM7-BASED DEVICES

Fast GPIO bug

The values of the fast GPIO registers can not be read direct via JTAG from a debugger. The direct access to the registers
corrupts the returned values. This means that the values in the fast GPIO registers normally can not be checked or
changed from a debugger.

Solution / Workaround

J-Link supports command strings which can be used to read a memory area indirect. Indirectly reading means that a
small code snippet will be written into RAM of the target device, which reads and transfers the data of the specified
memory area to the debugger. Indirectly reading solves the fast GPIO problem, because only direct register access
corrupts the register contents.

Define a 256 byte aligned area in RAM of the LPC target device with the J-Link command map ram and define
afterwards the memory area which should be read indirect with the command map indirectread to use the indirectly
reading feature of J-Link. Note that the data in the defined RAM area is saved and will be restored after using the RAM
area.

This information is applicable to the following devices:

e LPC2101

e LPC2102

e LPC2103

J-Link_J-TraceARM-5 105



e LPC213x/01

e LPC214x (all devices)
e LPC23xx (all devices)
e LPC24xx (all devices)

Example

J-Link commands line options can be used with the C-SPY debugger of the IAR Embedded Workbench. Open the
Project options dialog and select Debugger. Select Use command line options in the Extra Options tap and enter
in the textfield --jlink_exec_command "map ram 0x40000000-0x40003fff; map indirectread
0x3fffc000-0x3fffcfff; map exclude Ox3fffd000-0x3fffffff; " as shown in the screenshot below.

Options for node "Project™ E

Category: Factary Settings |

General Options
C/C++ Compiler Setup I Download — Extra Options | F'Iuginsl
Aszzembler .

Cusztomn Build
Build &ctions
Linker
Debuager ~jlink_exec_command “map ram 0x40000000-0<400036; map indire;l

Simulator

Angel

14R R OM-monitor

J-Linkd)-Trace

LI FTDI

M acraigor

RDI

Third-Party Driver

LCommand line options: [one per line]

|

()8 | Cancel |

With these additional commands are the values of the fast GPIO registers in the C-SPY debugger correct and can be
used for debugging. For more information about J-Link command line options refer to subchapter Command strings
on page 75.

RESET (CORTEX-M3 BASED DEVICES)

For Cortex-M3 based NXP LPC devices the reset itself does not differ from the one for other Cortex-M3 based devices:
After the device has been reset, the core is halted before any instruction is performed. For the Cortex-M3 based LPC
devices this means the CPU is halted before the bootloader which is mapped at address 0 after reset.

The user should write the memmap register after reset, to ensure that user flash is mapped at address 0. Moreover, the
user have to correct the Stack pointer (R13) and the PC (R15) manually, after reset in order to debug the application.

OKI

J-Link has been tested with the following OKI devices:

ML67Q4002
ML67Q4003
ML67Q4050
ML67Q4051
ML67Q4060
ML67Q4061

Currently, there are no specifics for these devices.

IAR J-Link and IAR }J-Trace
106 User Guide J-Link_J-TraceARM-5



Device specifics

Renesas

J-Link has been tested with the following Renesas devices:

R5F56104
R5F56106
R5F56107
R5F56108
R5F56216
R5F56217
R5F56218
R5F562N7
R5F562N8
R5F562T6
R5F562T7
R5F562TA

Currently, there are no specifics for these devices.

Samsung

J-Link has been tested with the following Samsung devices:

S3FNé60D

S3FN60D

On the S3FN60D the watchdog may be running after reset (depends on the content of the smart option bytes at addr.
0xCO0). The watchdog keeps counting even if the CPU is in debug mode (e.g. halted). So, please do not use the watchdog
when debugging to avoid unexpected behavior of the target application. A special reset strategy has been implemented
for this device which disables the watchdog right after a reset has been performed. We recommend to use this reset
strategy when debugging a Samsung S3FN60D device.

ST Microelectronics

J-Link has been tested with the following ST Microelectronics devices:

STR710FZ1
STR710FZ2
STR711FRO
STR711FR1
STR711FR2
STR712FRO
STR712FR1
STR712FR2
STR715FRO
STR730FZ1
STR730FZ2
STR731FV0
STR731FV1
STR731FV2
STR735FZ1

J-Link_J-TraceARM-5

—e

107



STR735FZ2
STR736FV0
STR736FV1
STR736FV2
STR750FV0
STR750FV1
STR750FV2
STR751FRO
STR751FR1
STR751FR2
STR752FR0O
STR752FR1
STR752FR2
STR755FRO
STR755FR1
STR755FR2
STR755FV0
STR755FV1
STR755FV2
STRO11FM32
STRO11FM44
STRO11FW32
STR911FW44
STRO912FM32
STR912FM44
STR912FW32
STR912FW44
STM32F101C6
STM32F101C8
STM32F101R6
STM32F101R8
STM32F101RB
STM32F101V8
STM32F101VB
STM32F103C6
STM32F103C8
STM32F103R6
STM32F103R8&
STM32F103RB
STM32F103V8
STM32F103VB

STR9IX

JTAG settings

These device are ARM966E-S based. We recommend to use adaptive clocking for these devices.

IAR J-Link and IAR }J-Trace
108 User Guide J-Link_J-TraceARM-5



Device specifics —e

Unlocking

The devices have 3 TAP controllers built-in. When starting J-Link . exe, it reports 3 JTAG devices. A special tool, J-
Link STR9 Commander (JLinkSTR91x . exe) is available to directly access the flash controller of the device. This tool
can be used to erase the flash of the controller even if a program is in flash which causes the ARM core to stall. For
more information about the J-Link STR9 Commander, please refer to J-Link STR91x Commander (Command line tool)
on page 34.

When starting the STR91x commander, a command sequence will be performed which brings MCU into Turbo Mode.

"While enabling the Turbo Mode, a dedicated test mode signal is set and controls the GPIOs in output. The IOs are
maintained in this state until a next JTAG instruction is send." (ST Microelectronics)

Enabling Turbo Mode is necessary to guarantee proper function of all commands in the STR91x Commander.

Switching the boot bank

The bootbank of the STR91x devices can be switched by using the J-Link STR9 Commander which is part of the J-
Link software and documentation package. For more information about the J-Link STR9 Commander, please refer to
J-Link STR91x Commander (Command line tool) on page 34.

STM32FI10X

These device are Cortex-M3 based.
All devices of this family are supported by J-Link.

Option byte programming

J-Flash supports programming of the option bytes for STM32 devices. In order to program the option bytes simply
choose the appropriate Device, which allows option byte programming, in the CPU settings tab (e.g. STM32F103ZE
(allow opt. bytes)).J-Flash will allow programming a virtual 16-byte sector at address 0x06000000 which
represents the 8 option bytes and their complements. You do not have to care about the option bytes’ complements since
they are computated automatically. The following table describes the structure of the option bytes sector

Address [31:24] [23:16] [15:8] [7:0]
0x06000000 complement Option byte | complement Option byte 0
0x06000004 complement Option byte 3 complement Option byte 2
0x06000008 complement Option byte 5 complement Option byte 4
0x0600000C complement Option byte 7 complement Option byte 6

Table 1: Option bytes sector description

Note:Writing a value of OxFF inside option byte 0 will read-protect the STM32. In order to keep the device unprotected
you have to write the key value 0xAS5 into option byte 0.

Note:The address 0x06000000 is a virtual address only. The option bytes are originally located at address Ox 1 FFFF800.
The remap from 0x06000000 to Ox1FFFF800 is done automatically by J-Flash.

Example

To program the option bytes 2 and 3 with the values 0OxAA and 0xBB but leave the device unprotected your option byte
sector (at addr 0x06000000) should look like as follows:

Address [31:24] [23:16] [15:8] [7:0]
0x06000000 0x00 OxFF Ox5A OxAS
0x06000004 0x44 0xBB 0x55 OxAA
0x06000008 0x00 OxFF 0x00 OxFF
0x0600000C 0x00 OxFF 0x00 OxFF

Table 2: Option bytes programming example

For a detailed description of each option byte, please refer to ST programming manual PM0042, section "Option byte
description”.

J-Link_J-TraceARM-5 109



Securing/unsecuring the device

The user area internal flash of the STM32 devices can be protected (secured) against read by untrusted code. The J-
Flash software allows securing a STM32F10x device. For more information about J-Flash, please refer to UM08003,
J-Flash User Guide. In order to unsecure a read-protected STM32F10x device, SEGGER offers two software
components:

e J-Flash
e J-Link STM32 Commander (command line utility)

For more information about J-Flash, please refer to UM08003, J-Flash User Guide. For more information about the J-
Link STM32 Commander, please refer to J-Link STM32 Commander (Command line tool) on page 36.

Note:Unsecuring a secured device will cause a mass-erase of the internal flash memory.

Hardware watchdog

The hardware watchdog of a STM32F10x device can be enabled by programming the option bytes. If the hardware
watchdog is enabled the device is reset periodically if the watchdog timer is not refreshed and reaches 0. If the hardware
watchdog is enabled by an application which is located in flash and which does not refresh the watchdog timer, the
device can not be debugged anymore.

Disabling the hardware watchdog

In order to disable the hardware watchdog the option bytes have to be re-programmed. SEGGER offers a free command
line tool included in you IAR Embedded Workbench installation which reprograms the option bytes in order to disable
the hardware watchdog. For more information about the STM32 commander, please refer to J-Link STM32
Commander (Command line tool) on page 36.

Software watchdog

If you enable the software watchdog (independed watchdog / window watchdog) in your target application and still
want to debug it, you should make sure that the watchdog does not keep running while the CPU is in debug mode (e.g.
halted by J-Link). This can be configured via the DBGMCU_CR register of the STM32F10x devices. To configure the
watchdog timers to stop while the CPU is in debug mode, bits 8 and 9 of the DBGMCU_CR have to be set:

* ((volatile int *) (0x40040520)) = (1 << 8) | (1 << 9);

Texas Instruments

J-Link has been tested with the following Texas Instruments devices:

TMS470R1A64
TMS470R1A128
TMS470R1A256
TMS470R1A288
TMS470R1A384
TMS470R1B512
TMS470R1B768
TMS470R1B1M
TMS470R1VF288
TMS470R1VF688
TMS470R1VF689

Currently, there are no specifics for these devices.

Toshiba

J-Link has been tested with the following Toshiba devices:

IAR J-Link and IAR }J-Trace
110 User Guide J-Link_J-TraceARM-5



TMPM321F10FG
TMPM322F10FG
TMPM323F10FG
TMPM324F10FG
TMPM330FDFG
TMPM330FWFG
TMPM330FYFG
TMPM332FWUG
TMPM333FDFG
TMPM333FWFG
TMPM333FYFG
TMPM341FDXBG
TMPM341FYXBG
TMPM360F20FG
TMPM361F10FG
TMPM362F10FG
TMPM363F10FG
TMPM364F10FG
TMPM366FDFG
TMPM366FWFG
TMPM366FYFG
TMPM370FYDFG
TMPM370FYFG
TMPM372FWUG
TMPM373FWDUG
TMPM374FWUG
TMPM380FWDFG
TMPM380FWFG
TMPM380FYDFG
TMPM380FYFG
TMPM382FSFG
TMPM382FWFG
TMPM395FWXBG

Currently, there are no specifics for these devices.

J-Link_J-TraceARM-5

Device specifics

—e



IAR J-Link and IAR }J-Trace
112 User Guide J-Link_J-TraceARM-5



Target interfaces and adapters

This chapter gives an overview about J-Link / |-Trace specific hardware details, such as the pinouts and available

adapters.

20-pin JTAG/SWD connector
PINOUT FOR JTAG

J-Link and J-Trace have a JTAG connector compatible to ARM’s Multi-

. . . VTref 1 e ®2 |NC

ICE. The JTAG connector is a 20 way Insulation Displacement Connector  ,trsT e e4 |GND

(IDC) keyed box header (2.54mm male) that mates with IDC sockets TDI 5@ ®6 |GND

mounted on a ribbon cable. T™MS 7e® @8 |[GND

. . ) . TCK 9e ®10/GND

*On later J-Link products like the J-Link Ultra, these pins are reserved for RrTCK 11 e ®12|GND
firmware extension purposes. They can be left open or connected to GND Tpbo 13 @ @14/ GND*
in normal debug environment. They are not essential for JTAG/SWD in RESET 15 ® @16 GND*
general. DBGRQ 17 ® @18 GND*
5V-Supply |19 @ ® 20 GND *

The following table lists the J-Link / J-Trace JTAG pinout.

PIN

SIGNAL

TYPE

Description

13
15

VTref

Input

Not connected NC

nTRST

TDI

TMS

TCK

RTCK

TDO
RESET

DBGRQ

5V-Supply

Output

Output

Output

Output

Input

Input
11O

NC

Output

This is the target reference voltage. It is used to check if the target has power, to create
the logic-level reference for the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board and must not have a series
resistor.

This pin is not connected in J-Link.

JTAG Reset. Output from J-Link to the Reset signal of the target JTAG port. Typically
connected to nTRST of the target CPU. This pin is normally pulled HIGH on the target to
avoid unintentional resets when there is no connection.

JTAG data input of target CPU.- It is recommended that this pin is pulled to a defined
state on the target board. Typically connected to TDI of the target CPU.

JTAG mode set input of target CPU. This pin should be pulled up on the target. Typically
connected to TMS of the target CPU.

JTAG clock signal to target CPU. It is recommended that this pin is pulled to a defined
state of the target board. Typically connected to TCK of the target CPU.

Return test clock signal from the target. Some targets must synchronize the JTAG inputs
to internal clocks. To assist in meeting this requirement, you can use a returned, and
retimed, TCK to dynamically control the TCK rate. J-Link supports adaptive clocking,
which waits for TCK changes to be echoed correctly before making further changes.
Connect to RTCK if available, otherwise to GND.

JTAG data output from target CPU. Typically connected to TDO of the target CPU.

Target CPU reset signal. Typically connected to the RESET pin of the target CPU, which is
typically called "nRST", "nRESET" or "RESET".

This pin is not connected in J-Link. It is reserved for compatibility with other equipment
to be used as a debug request signal to the target system. Typically connected to DBGRQ
if available, otherwise left open.

This pin can be used to supply power to the target hardware. Older J-Links may not be
able to supply power on this pin. For more information about how to enable/disable the
power supply, please refer to Target power supply on page |15.

Table 1: J-Link / J-Trace pinout

J-Link_J-TraceARM-5

113



Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They should also be connected to GND
in the target system.

Target board design

We strongly advise following the recommendations given by the chip manufacturer. These recommendations are
normally in line with the recommendations given in the table Pinout for JTAG on page 113. In case of doubt you should
follow the recommendations given by the semiconductor manufacturer.

You may take any female header following the specifications of DIN 41651.
For example:

Harting part-no. 09185206803
Molex part-no. 90635-1202
Tyco Electronics part-no. 2-215882-0

Typical target connection for JTAG

JTAG connector Target board
Volt
A ltage >V
VTref |€ 1
\ 4
nTRST 3% ____ 3 ATRST VCC
TDI > 5 D1
TMS 7 7 ™S
J-Link TCK 2 2 TCK CPU
RTCK |t 11 RTCK
TDO |ei3 13 D0
RESET |12 15 NRST o
GND |29 20

* NTRST and RTCK may not be available on some CPUs.
** Optional to supply the target board from J-Link.

Pull-up/pull-down resistors

Unless otherwise specified by developer’s manual, pull-ups/pull-downs are recommended to be between 2.2 kOhms
and 47 kOhms.

IAR J-Link and IAR }J-Trace
114 User Guide J-Link_J-TraceARM-5



Target power supply

Target interfaces and adapters

Pin 19 of the connector can be used to supply power to the target hardware. Supply voltage is 5V, max. current is
300mA. The output current is monitored and protected against overload and short-circuit. Power can be controlled via
the J-Link commander. The following commands are available to control power:

Command Explanation

power on Switch target power on

power off Switch target power off

power on perm Set target power supply default to "on"
power off perm Set target power supply default to "off"

Table 2: Command List

PINOUT FOR SWD

The J-Link and J-Trace JTAG connector is also compatible to ARM’s vT
. . ref 1e 2 |NC
Serial Wire Debug (SWD). nTRST 3e e4 |GND
*On later J-Link products like the J-Link Ultra, these pins are reserved for I;Is g : : Z z:g
firmware extension purposes. They can be left open or connected to GND ¢k 9e 10| GND
in normal debug environment. They are not essential for JTAG/SWD in RTCK |:1 1 e e12/GND
general. TDO 13 @ ® 14 GND*
. . . . RESET 15 ® ® 16| GND*
The following table lists the J-Link / J-Trace SWD pinout. DBGRQ 17 18/ GND*
PIN SIGNAL TYPE  Description SV-Supply |19 ¢ ¢ 20/GND*
| VTref Input This is the target reference voltage. It is used to check if the target has power, to create
the logic-level reference for the input comparators and to control the output logic levels
to the target. It is normally fed from Vdd of the target board and must not have a series
resistor.
2 Not connected NC This pin is not connected in J-Link.
3 Not Used NC This pin is not used by J-Link. If the device may also be accessed via JTAG, this pin may be
connected to nTRST, otherwise leave open.
5 Not used NC This pin is not used by J-Link. If the device may also be accessed via JTAG, this pin may be
connected to TDI, otherwise leave open.
7 SWDIO 110 Single bi-directional data pin. A pull-up resistor is required. ARM recommends 100
kOhms.
9 SWCLK Output  Clock signal to target CPU.
It is recommended that this pin is pulled to a defined state on the target board. Typically
connected to TCK of target CPU.
I Not used NC This pin is not used by J-Link when operating in SWD mode. If the device may also be
accessed via JTAG, this pin may be connected to RTCK, otherwise leave open.
13 SWoO Output  Serial Wire Output trace port. (Optional, not required for SWD communication.)
15 RESET /10 Target CPU reset signal. Typically connected to the RESET pin of the target CPU, which is
typically called "nRST", "nRESET" or "RESET".
17 Not used NC This pin is not connected in J-Link.
19 5V-Supply Output This pin can be used to supply power to the target hardware. Older J-Links may not be

able to supply power on this pin. For more information about how to enable/disable the
power supply, please refer to Target power supply on page | 16.

Table 3: J-Link / J-Trace SWD pinout

Pins 4, 6, 8, 10, 12, 14, 16, 18, 20 are GND pins connected to GND in J-Link. They should also be connected to GND

in the target system.

J-Link_J-TraceARM-5

115



Target board design

We strongly advise following the recommendations given by the chip manufacturer. These recommendations are
normally in line with the recommendations given in the table Pinout for SWD on page 115. In case of doubt you should
follow the recommendations given by the semiconductor manufacturer.

Typical target connection for SWD

JTAG connector Target board
Volt
5V supply 1¥—————————1% Regulator » VCC
VTref et L
: v
SWDIO |€Z z SWDIO vee
I-Link SWCLK |2 2 SWCLK
-Lin CPU
SWo |¢E—————————- = SWO
RESET |2 1 nRST
GND

* Optional to supply the target board from J-Link.

Pull-up/pull-down resistors

A pull-up resistor is required on SWDIO on the target board. ARM recommends 100 kOhms.
In case of doubt you should follow the recommendations given by the semiconductor manufacturer.

Target power supply

Pin 19 of the connector can be used to supply power to the target hardware. Supply voltage is 5V, max. current is
300mA. The output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are available to control power:

Command Explanation

power on Switch target power on

power off Switch target power off

power on perm Set target power supply default to "on"
power off perm Set target power supply default to "off"

Table 4: Command List

38-pin Mictor JTAG and Trace connector

J-Trace provides a JTAG+Trace connector. This connector is a 38-pin mictor plug. It connects to the target via a 1-1
cable.

The connector on the target board should be "TYCO type 5767054-1" or a compatible receptacle. J-Trace supports 4,
8, and 16-bit data port widths with the high density target connector described below.

IAR J-Link and IAR }J-Trace
116 User Guide J-Link_J-TraceARM-5



Target board trace connector

J-Trace can capture the state of signals PIPESTAT[2:0], TRACESYNC and

Pin 1
chamfer

edge of each TRACECLK or on each alternate rising or falling edge.

CONNECTING THE TARGET BOARD

J-Trace connects to the target board via a 38-pin trace cable. This cable has a receptacle on the one side, and a plug on
the other side. Alternatively J-Trace can be connected with a 20-pin JTAG cable.

Warning: Never connect trace cable and JTAG cable at the same time because this

may harm your J-Trace and/or your target.

J-Trace

JTAG

Trace JTAG

-
=
1
(2}
®
0
Q
=
®

J-Trace

JTAG

Trace JTAG

o
—
>
()
0
Q
o
@

J-Link_J-TraceARM-5

Target interfaces and adapters

TRACEPKT([n:0] at each rising

J-Trace

-
=
3
(2}
o
O
Q
=
o

9|qed 9vV1ir

—e

17



PINOUT

The following table lists the JTAG+Trace connector pinout. It is compatible to the "Trace Port Physical Interface’'
described in [ETM], 8.2.2 "Single target connector pinout".

"

PIN  SIGNAL Description
| NC No connected.
2 NC No connected.
3 NC No connected.
4 NC No connected.
5 GND Signal ground.
6 TRACECLK Clocks trace data on rising edge or both edges.
7 DBGRQ Debug request.
8 DBGACK Debug acknowledge from the test chip, high when in debug state.
9 RESET Open-collector output from the run control to the target system reset.
10 EXTTRIG Optional external trigger signal to the Embedded trace Macrocell (ETM). Not used.
Leave open on target system.
I TDO Test data output from target JTAG port.
12 VTRef Signal level reference. It is normally fed from Vdd of the target board and must not

have a series resistor.

13 RTCK Return test clock from the target JTAG port.

14 VSupply Supply voltage. It is normally fed from Vdd of the target board and must not have a
series resistor.

I5 TCK Test clock to the run control unit from the JTAG port.

6 Trace signal 12 Trace signal. For more information, please refer to Assignment of trace information pins

between ETM architecture versions on page | I9.
17 T™S Test mode select from run control to the JTAG port.

18 Trace signal |1 Trace signal. For more information, please refer to Assignment of trace information pins
between ETM architecture versions on page | I9.

19 TDI Test data input from run control to the JTAG port.

20 Trace signal 10 Trace signal. For more information, please refer to Assignment of trace information pins
between ETM architecture versions on page | I9.

21 nTRST Active-low JTAG reset
22 Trace signal 9 Trace signals. For more information, please refer to Assignment of trace information pins
23 Trace signal 20 between ETM architecture versions on page | I9.

24 Trace signal 8
25 Trace signal 19
26 Trace signal 7
27 Trace signal 18
28 Trace signal 6
29 Trace signal 17
30 Trace signal 5
31 Trace signal 16
32 Trace signal 4
33 Trace signal I5
34 Trace signal 3
35 Trace signal 14
36 Trace signal 2
37 Trace signal 13
38 Trace signal |

Table 5: JTAG+Trace connector pinout

IAR J-Link and IAR }J-Trace
118 User Guide J-Link_J-TraceARM-5



Target interfaces and adapters

ASSIGNMENT OF TRACE INFORMATION PINS BETWEEN ETM
ARCHITECTURE VERSIONS

The following table show different names for the trace signals depending on the ETM architecture version.

Trace signal ETMvI ETMv2 ETMv3

Trace signal | PIPESTAT[0] PIPESTAT[O] TRACEDATA[O]
Trace signal 2 PIPESTATTI] PIPESTAT(I] TRACECTL
Trace signal 3 PIPESTAT([2] PIPESTAT[2] Logic |

Trace signal 4 TRACESYNC PIPESTAT[3] Logic 0

Trace signal 5 TRACEPKTI0] TRACEPKTIO0] Logic 0

Trace signal 6 TRACEPKTTII] TRACEPKT[I] TRACEDATA[I]
Trace signal 7 TRACEPKTI[2] TRACEPKT[2] TRACEDATA[2]
Trace signal 8 TRACEPKTI3] TRACEPKT[3] TRACEDATA[3]
Trace signal 9 TRACEPKTI[4] TRACEPKT([4] TRACEDATA[4]
Trace signal 10 TRACEPKTIS5] TRACEPKTTI5] TRACEDATA[S]
Trace signal || TRACEPKTI6] TRACEPKTT(6] TRACEDATA[6]
Trace signal 12 TRACEPKTI[7] TRACEPKTI[7] TRACEDATA[7]
Trace signal 13 TRACEPKTI8] TRACEPKTI8] TRACEDATA[8]
Trace signal 14 TRACEPKTI[9] TRACEPKTI[9] TRACEDATA[9]

Trace signal 15
Trace signal 16
Trace signal |7
Trace signal 18
Trace signal 19

Trace signal 20

TRACEPKTI[10]
TRACEPKTII 1]
TRACEPKTI[12]
TRACEPKT[I3]
TRACEPKTI[14]
TRACEPKTII5]

TRACEPKT[10]
TRACEPKT[I 1]
TRACEPKT[12]
TRACEPKT[I3]
TRACEPKT[14]
TRACEPKT[I5]

TRACEDATA[10]
TRACEDATA[I 1]
TRACEDATA[12]
TRACEDATA[I3]
TRACEDATA[ 4]
TRACEDATA[I5]

Table 6: Assignment of trace information pins between ETM architecture versions

TRACE SIGNALS
Data transfer is synchronized by TRACECLK.

Signal levels
The maximum capacitance presented by J-Trace at the trace port connector,
including the connector and interfacing logic, is less than 6pF. The trace port lines have a matched impedance of 50.

The J-Trace unit will operate with a target board that has a supply voltage range of 3.0V-3.6V.

Clock frequency
For capturing trace port signals synchronous to TRACECLK, J-Trace supports

a TRACECLK frequency of up to 200MHz. The following table shows the TRACECLK frequencies and the setup and
hold timing of the trace signals with respect to TRACECLK.

Parameter Min. Max. Explanation

Tperiod Sns 1000ns Clock period

Fmax IMHz 200MHz Maximum trace frequency
Tch 2.5ns - High pulse width

Tcl 2.5ns - Low pulse width

Tsh 2.5ns - Data setup high

Thh 1.5ns - Data hold high

Tsl 2.5ns - Data setup low

Thi 1.5ns - Data hold low

Table 7: Clock frequency

J-Link_J-TraceARM-5

—e

119



The diagram below shows the TRACECLK frequencies and the setup and hold timing of the trace signals with respect
to TRACECLK.

\ 4

Tperiod

Full / /

TRACECLK Tch Tol

A

DATA \ /

Tsh Thh Tsl (e

Thl

A
\ 4

Half-rate / \

TRACECLK

Note:J-Trace supports half-rate clocking mode. Data is output on each edge of the TRACECLK signal and
TRACECLK (max) <= 100MHz. For half-rate clocking, the setup and hold times at the JTAG+Trace connector
must be observed.

19-pin JTAG/SWD and Trace connector

J-Trace provides a JTAG/SWD+Trace connector. This connector is a 19-

pin connector. It connects to the target via an 1-1 cable. VTref 1 ee2 | SWDIO/TMS
GND 3 @@ 4 | SWCLK/TCK
GND 5ee6 | SWO/TDO
--- 7 8 |TDI
NC 9 e e 10| nRESET
5V-Supply| 11 e @ 12| TRACECLK
5V-Supply |13 ® ® 14| TRACEDATA[O]
GND 15 ® ® 16|/ TRACEDATA[1]
GND 17 ® ® 18| TRACEDATA[2]
GND 19 ® @ 20| TRACEDATA[3]

The following table lists the J-Link / J-Trace SWD pinout.

PIN SIGNAL TYPE Description

| VTref Input This is the target reference voltage. It is used to check if the target has power, to

create the logic-level reference for the input comparators and to control the output
logic levels to the target. It is normally fed from Vdd of the target board and must not
have a series resistor.

2 SWDIO/TMS 1o/ JTAG mode set input of target CPU. This pin should be pulled up on the target.

output Typically connected to TMS of the target CPU.

4 SWCLK/TCK Output  JTAG clock signal to target CPU. It is recommended that this pin is pulled to a defined
state of the target board. Typically connected to TCK of the target CPU.

6 SWO/TDO Input JTAG data output from target CPU. Typically connected to TDO of the target CPU.
When using SWD, this pin is used as Serial Wire Output trace port. (Optional, not
required for SWD communication)

--- --- -—- This pin (normally pin 7) is not existent on the 19-pin JTAG/SWD and Trace
connector.

8 TDI Output  JTAG data input of target CPU.- It is recommended that this pin is pulled to a defined
state on the target board. Typically connected to TDI of the target CPU. For CPUs
which do not provide TDI (SWD-only devices), this pin is not used. J-Link will ignore
the signal on this pin when using SWD.

Table 8: 19-pin JTAG/SWD and Trace pinout

IAR J-Link and IAR }J-Trace
120 User Guide J-Link_J-TraceARM-5



Target interfaces and adapters

PIN  SIGNAL TYPE Description

9 NC NC Not connected inside J-Link. Leave open on target hardware.

10 nRESET /O Target CPU reset signal. Typically connected to the RESET pin of the target CPU,
which is typically called "nRST", "nRESET" or "RESET".

I 5V-Supply Output  This pin can be used to supply power to the target hardware. For more information
about how to enable/disable the power supply, please refer to Target power supply on
page 121.

12 TRACECLK Input Input trace clock. Trace clock = 1/2 CPU clock.

13 5V-Supply Output  This pin can be used to supply power to the target hardware. For more information
about how to enable/disable the power supply, please refer to Target power supply on
page 121.

14 TRACEDATA[O0] Input Input Trace data pin 0.

16 TRACEDATA[I] Input Input Trace data pin 0.

18 TRACEDATA[2] Input Input Trace data pin 0.

20 TRACEDATA[3] Input Input Trace data pin 0.

Table 8: 19-pin JTAG/SWD and Trace pinout
Pins 3, 5, 15, 17, 19 are GND pins connected to GND in J-Trace CM3. They should also be connected to GND in the

target system.

TARGET POWER SUPPLY

Pins 11 and 13 of the connector can be used to supply power to the target hardware. Supply voltage is 5V, max. current
is 300mA. The output current is monitored and protected against overload and short-circuit.

Power can be controlled via the J-Link commander. The following commands are available to control power:

Command

Explanation

power on
power off
power on perm

power off perm

Switch target power on
Switch target power off

Set target power supply default to "on'

Set target power supply default to "off"

Table 9: Command List

9-pin JTAG/SWD connector

Some target boards only provide a 9-pin JTAG/SWD connector for

Cortex-M. For these devices a 20-pin -> 9-pin Cortex-M adapter is

available.

VTref 1 ee?2 | SWDIO /TMS
GND |: 3004 | SWCLK / TCK

GND 5ee6 |SWO/TDO
- 7 e8 |TDI
NC 9 e e 10| NRESET

The following table lists the output of the 9-pin Cortex-M connector.

PIN SIGNAL TYPE Description
| VTref Input This is the target reference voltage. It is used to check if the target has power, to
create the logic-level reference for the input comparators and to control the output
logic levels to the target. It is normally fed from Vdd of the target board and must not
have a series resistor.
2 SWDIO/TMS 1o/ JTAG mode set input of target CPU. This pin should be pulled up on the target.
output Typically connected to TMS of the target CPU. When using SWD, this pin is used as
Serial Wire Output trace port. (Optional, not required for SWD communication)
4 SWCLK/TCK Output  JTAG clock signal to target CPU. It is recommended that this pin is pulled to a defined

state of the target board. Typically connected to TCK of the target CPU.

Table 10: 9-pin JTAG/SWD pinout

J-Link_J-TraceARM-5

—e

121



PIN  SIGNAL TYPE Description

6 SWO/TDO Input JTAG data output from target CPU. Typically connected to TDO of the target CPU.

--- --- - This pin (normally pin 7) is not existent on the 19-pin JTAG/SWD and Trace
connector.

8 TDI Output  JTAG data input of target CPU.- It is recommended that this pin is pulled to a defined

state on the target board. Typically connected to TDI of the target CPU. For CPUs
which do not provide TDI (SWD-only devices), this pin is not used. J-Link will ignore
the signal on this pin when using SWD.

9 NC NC Not connected inside J-Link. Leave open on target hardware.

Table 10: 9-pin JTAG/SWD pinout

Pins 3 and 5 are GND pins connected to GND on the Cortex-M adapter. They should also be connected to GND in the
target system.

Adapters

There are various adapters available for J-Link as for example the JTAG isolator, the J-Link RX adapter or the J-Link
Cortex-M adapter.

For more information about the different adapters, please refer to
http://www.segger.com/jlink-adapters.html or http://www.iar.com/probes.

IAR J-Link and IAR }J-Trace
122 User Guide J-Link_J-TraceARM-5



Background information

This chapter provides background information about JTAG and ARM. The ARM7 and ARM?9 architecture is based
on Reduced Instruction Set Computer (RISC) principles. The instruction set and the related decode mechanism are
greatly simplified compared with microprogrammed Complex Instruction Set Computer (CISC).

JTAG

JTAG is the acronym for Joint Test Action Group. In the scope of this document, "the JTAG standard" means
compliance with IEEE Standard 1149.1-2001.

TEST ACCESS PORT (TAP)

JTAG defines a TAP (Test access port). The TAP is a general-purpose port that can provide access to many test support
functions built into a component. It is composed as a minimum of the three input connections (TDI, TCK, TMS) and
one output connection (TDO). An optional fourth input connection (nTRST) provides for asynchronous initialization
of the test logic.

PIN Type Explanation

TCK Input The test clock input (TCK) provides the clock for the test logic.

TDI Input Serial test instructions and data are received by the test logic at test data input
(TDI).

TMS Input The signal received at test mode select (TMS) is decoded by the TAP controller to

control test operations.

TDO Output Test data output (TDO) is the serial output for test instructions and data from the
test logic.
nTRST Input The optional test reset (nTRST) input provides for asynchronous initialization of
(optional) the TAP controller.

Table 1: Test access port

DATA REGISTERS

JTAG requires at least two data registers to be present: the bypass and the boundary-scan register. Other registers are
allowed but are not obligatory.

Bypass data register
A single-bit register that passes information from TDI to TDO.
Boundary-scan data register

A test data register which allows the testing of board interconnections, access to input and output of components when
testing their system logic and so on.

INSTRUCTION REGISTER

The instruction register holds the current instruction and its content is used by the TAP controller to decide which test
to perform or which data register to access. It consist of at least two shift-register cells.

J-Link_J-TraceARM-5

123



THE TAP CONTROLLER

The TAP controller is a synchronous finite state machine that responds to changes at the TMS and TCK signals of the
TAP and controls the sequence of operations of the circuitry.

TAP controller state diagram

<< Reset <
tms=1

tms=0
Idle tms=1
tms=0 i
tms=1
Update-IR
tms=1 tms=0

State descriptions
Reset

The test logic is disabled so that normal operation of the chip logic can continue unhindered. No matter in which state
the TAP controller currently is, it can change into Reset state if TMS is high for at least 5 clock cycles. As long as TMS
is high, the TAP controller remains in Reset state.

Idle

Idle is a TAP controller state between scan (DR or IR) operations. Once entered, this state remains active as long as
TMS is low.

DR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the selected data registers is initiated.
IR-Scan

Temporary controller state. If TMS remains low, a scan sequence for the instruction register is initiated.
Capture-DR

Data may be loaded in parallel to the selected test data registers.

Shift-DR

The test data register connected between TDI and TDO shifts data one stage towards the serial output with each clock.
Exit1-DR

Temporary controller state.

IAR J-Link and IAR }J-Trace
124 User Guide J-Link_J-TraceARM-5



Background information —e

Pause-DR

The shifting of the test data register between TDI and TDO is temporarily halted.

Exit2-DR

Temporary controller state. Allows to either go back into Shift-DR state or go on to Update-DR.
Update-DR

Data contained in the currently selected data register is loaded into a latched parallel output (for registers that have such
a latch). The parallel latch prevents changes at the parallel output of these registers from occurring during the shifting
process.

Capture-IR

Instructions may be loaded in parallel into the instruction register.

Shift-IR

The instruction register shifts the values in the instruction register towards TDO with each clock.
Exit1-IR

Temporary controller state.

Pause-IR

Wait state that temporarily halts the instruction shifting.

Exit2-IR

Temporary controller state. Allows to either go back into Shift-IR state or go on to Update-IR.
Update-IR

The values contained in the instruction register are loaded into a latched parallel output from the shift-register path.
Once latched, this new instruction becomes the current one. The parallel latch prevents changes at the parallel output
of the instruction register from occurring during the shifting process.

Embedded Trace Macrocell (ETM)

Embedded Trace Macrocell (ETM) provides comprehensive debug and trace facilities for ARM processors. ETM
allows to capture information on the processor's state without affecting the processor's performance. The trace
information is exported immediately after it has been captured, through a special trace port.

Microcontrollers that include an ETM allow detailed program execution to be recorded and saved in real time. This
information can be used to analyze program flow and execution time, perform profiling and locate software bugs that
are otherwise very hard to locate. A typical situation in which code trace is extremely valuable, is to find out how and
why a "program crash" occurred in case of a runaway program count.

A debugger provides the user interface to J-Trace and the stored trace data. The debugger enables all the ETM facilities
and displays the trace information that has been captured. J-Trace is seamlessly integrated into the IAR Embedded
Workbench® IDE. The advanced trace debugging features can be used with the [AR C-SPY debugger.

TRIGGER CONDITION

The ETM can be configured in software to store trace information only after a specific sequence of conditions. When
the trigger condition occurs the trace capture stops after a programmable period.

CODE TRACING AND DATA TRACING

Code trace

Code tracing means that the processor outputs trace data which contain information about the instructions that have
been executed at last.

J-Link_J-TraceARM-5 125



Data trace

Data tracing means that the processor outputs trace data about memory accesses (read / write access to which address
and which data has been read / stored). In general, J-Trace supports data tracing, but it depends on the debugger if this
option is available or not. Note that when using data trace, the amount of trace data to be captured rises enormously.

J-TRACE INTEGRATION EXAMPLE - IAR EMBEDDED WORKBENCH
FOR ARM

In the following a sample integration of J-Trace and the trace functionality on the debugger side is shown. The sample
is based on IAR’s Embedded Workbench for ARM integration of J-Trace.

IAR J-Link and IAR }J-Trace
126 User Guide J-Link_J-TraceARM-5



Code coverage - Disassembly tracing

ZZ1AR Embedded Workbench IDE
File Edit View Project Debug Disassembly J-link Tools ‘Window Help

Background information

[-[Ox]

IEE IR FZyY %=

B &0 [EE TR S b ob|

CeZaLEZT|X

oled_lle | stm32f10x_rvic.c

93 #ifdef DEBUG
94  debug(>;
25 flendif

26

® 197
98 clock systen
39 i Teiess

BZ lh.fnd:f EHBJLRSH
#% Set the Uector Table hase location at Bx20000000 */

34 NUlC,S:t-J:ctnr-'lahl:(NUlC Ue:tTahJRH Bx@3;

@5 flelse ~x UECT_TAB_FLA:

B6 /% Set the U=ctnl~ Table

has: location at B:

@87 NUIC_S ahle(NVIC VectTah_FLASH, 8x@>;
88 flendif
B2 NUIC_PriorityGroupConfig{(NUIC_PriorityGroup_4>;
a
77 SysTick end of count event each B.1s with input clock equal to ?MHz CHCLK/8.
1] SysTick_SetReload(906: >H

77 Enable SysTick interrupt
SysTick_| lTCunfl.g(ENRBLE)
SysTick _CounterCmd{SysTick_Counter_Enable>;

#7 Buttons port init
77 GPIO enable clock and release Res
RCC_APB2PeriphResetCmd( RCCJPBZPEPIF}] GPIOR

i RCC_APB2Periph_GPIOG, DISABLE);
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOA

RCC_APB2Periph_GPIOG. ENABLE);

GPIO_InitStructure. GPIOJ].n = B1_MASK

GPIOJ‘DdE INJLORTING,
GPIO_Speed S@MHz
GPIO_Init<Bi_PORT. &GPIO_] lnltStructure),

GPIO_InitStructure .GPIO_Pin B2_MAS.
GPIO_| lnitStPucture.GPIOJud: GPI0_Mode | INJLORTING,
GPIO_InitStructure .GPI0_Sp GPIO_Speed S@MHz
GPIO_Init<{B2_PORT, &GPIOQ_] lnltStructure),

EXT_CRT_SECTIONCY;

# AN_IR port and ADC 1nit
// Enable ADCL and GPIOC c
RCCJPBZP:l'-1.th=setCmd(RCCJPBZPerlpthCl
RCC_APB2PeriphClockCmd (RCC_APB2Periph_ADC1

RCC_APB2Periph_GPIOC. DISABLED;
RCC_APB2Periph_GPIOC. ENABLE);

defaul

o

T — — ]

[7PDrawTable_: |
DBodBEAD ~BDLA ADD SP, SP, #0x68
0E00BFA2  ED7O FOF {R4,RE,RE,FC}

77OrawTable_0: [
0800BFA4 DDCO BLE 0X800BF28
0Z00BFAE 0300 LERS RO, RO, #0x0

oid main(woid)

ain:

ain:

L TexT_14:
0E00BFAE EELQ PUSH R4, LR}
0800BFAA  BDSE suB SP, SP, #0x20
ebug(l;

OF00EFAC FODIFEAs BL debug

ENTR _CRT_SECTIDN

Clk_Init

SeoTarEs trererez BL clk_Init

HyTC sewe:tnrmmemvx: vectTah FLASH, ox0):
0F00BFEE 2100 S RL,

0800BFBA  FOSFE000 MD\IS RO, #0xE00000
0800BFBE  FOOLFCES NvIC_: se(ve:tnrmme
HTC Prwrwtvﬁrwuc:mﬁumvxc Friorit 4
DEDOBFCE - F4477040 RO,

300
0800BFCE_ FOO wwic_PriorityGroupcontig

SysTick setRewad[sooaooj

RO, [PC, #0x108

SysTick ITConfig ENAELE H

0800BFDG 2001 Ra,

080DBFD2  FOOLFE1A SyST m< ITCunﬁg
SysTick Countercmd Sys'ﬁ ck_Counter _Enab

0800BFDE 2001 RO,

0B00BFDE  FOOLFAEB SySTick Enunter(md
CC_AFB2Feri hRESEtCmd R PBZPEFI h

| REC_APB2ZPEriph, GPIDG DISABLE]S
0800BFDC 2100 Vs R1, #ox0
0F00BFDE F44F7082 MO\I RDv

%
CE_aPB2PEr phResetcmd
bezorTan G oA

0800BFE2  F7FFFASD
Bee apEsper pht lockcmir _ace

L RCC_APB2Feriph GPING, ENABLE):
0BO0BFEG 2101 MOVS
0S00BFEE F44F7082 MOV Rd, wonlod
0BODBFEC F7FFFAZO0  BL RCE_APB2PEr phe nekamd
GPIO_InitStructure.GPIO_Pin = &1_WMASK:
Q600BFFD F43F7080 MOV RO, #0x100

0800BFF4  FEADDOO0

RO, [5P]
SPIO_Initstructure. GPInJmne = GPIO Wode  TH_FLOATING:

[fol_[+
oX[Bay =
Indesx Frame [ Address [ opeode Trace [ Comment
003064 003382 0x0B00DGSE E0D4 B PPNWIC_SetvectorTable_2
77TNVIC_SetvectorTable_2:
003065 003383 OXDB00DBAA. 4807 LOR RO, [PC, #0x1C]
003068 003384 00800D8AC 4265 cup .
003067 003388 Ox0E00DSAE D204 BCC TTNVIC_SetvectorTable 4
2PNVIC_SetvectorTable_s:
003068 003zEe Ox08000ZEA 4804 LOR: RO, [FC, #0x10]
003063 003387 0080008BC 4028 ANDS RO, RO, RS
003070 03388 0x0800D8BE 4320 ORRS RO, RO, R4
003071 003zEe Ox080008C0 4304 LOR R1, [FC, #0x10]
003072 003330 0X080008C2 809 LOR R1, [R1]
003073 003391 0X0800DECH 6088 STR RO, [R1, #0x&]
003074 003392 0X0800DBCE BD31 POP {RO,R4,R5,PC}
0032078 003382 Ox0800BFC2 Fd4F Ll RO, #0x300
003076 003394 OX0BO0BFCE FoOL BL NVIC_Pri ori tyGroupCoantig
NYIC_PriorityGroupconfig:
003077 003395 0X0B00DE4C BS10 PUSH {R4,LR]}
003078 00333 Ox0E00DE4E 0004 MaE R4, RO
003079 003357 008000850 Fsea cup R4, #0x700
003080 003338 Ox0E00DEE4 Not executed
003081 003353 00800085 6 FsBa P R4, #0x600
003082 003400 0X0800085A NOT executed
003082 003401 Ox0E00DEEC FEE4 CMF R4, #0xEO00
003084 003402 0x0B8000&60 Not executed
003085 003403 008000862 Fsga <P R4, #0x400
00308e 003404 Ox0E00DEEE Not executed
003087 003405 0x08000868 FsBa P R4, #0x300
003088 003406 0x0800086C NOT executed
TTNVIC_FriorityGroupConfig_0:
003089 003407 0X0B800DS6E E0D4 B 2PNVIC_Pri0r tyGroupContig_2
TTNVIC_FriorityGroupConfig_z:
003030 003408 OX0B00DETA. F80F LOR.W [PC, #0x58]
003091 003409 0X0800DSTE 6800 LOR RO, [RO]
0020382 003410 Ox08000&50 4301 LOR: R1, [PC, #0x4]
003033 003411 0x08000852 4321 ORRS RL, R1, R4
003094 003412 0X0800DEEH 60C1 STR R1, [RO, #0xC]
003095 003413 0X0800D886 BD10 POP {R4,PC}
00303e 0032414 OxHEHEFEA 4876 LOR: RO, [P, #0x1DE]

4

ETM Trace [ETH Function Trace

N

J-Link_J-TraceARM-5

—e

127



Code coverage

Flle Edi

1AR Embedded Workbench IDE

View  Project

Debug  Disassembly

Source code tracing

ik Tooks Window Help

=1 E3

BT IR

Fl4y %%

B P GBS b

=l

bﬁ&&nﬂﬂlbulxl

aledl_ll.c | stm3zF10x_nwvic.c

T — C—]

ETM Trace ETM Function Trace

93 Wildel DEBIG
ehug<>; 77O aWTaBT 5
95 frondif |
26 0300BFAE 0500 L=RE RO, RO, #0X0
@ 7 5 oid main{vaid) _
98 </ Init clock system I
99 Clk_Init(>; ain:
2o
. text_
BZ ulfndef E"BJL“SH OEDOEFAE BELO FUSH {R4,LR}
/% Set the Uector Table hase location at Bx20000000 =/ 0BODBFAA 0SB sus P, P, #Ox20
03 MUIC SetboctortonleNUTC UsctTah RAM, Did>: el ireas el 4
05 ftelse /% UECI_TAB_FLASH x/ . bug
. ENTR_CRT_SECTION
Bl (ridef the Mector Tehie Mase docation at oxatamaomn > R —
87 NUIC able<NUIC_VectTab_FLASH. Bx0); eI E
208 ttendif 0800BFES F7FFFFe: Clk_
209 NUIC PriorityGroupConfigCNUIC PriorityGroup 453 | NI, STyt T (NUTC vertTab L ATty eni:
0Z00EFEE
27 SysTick end of count event each B.1s with input clock equal to 9MHz <HCLK/8, defaul 080DEFEA FOSFGO0D  MOVS RO, #0x6000000
& SysTick_SetReload<980080); 0B0DBFBE  FODLFCES  BL nic_setvectorTable
77 Enable SysTick interrupt MY Frior] buGroupcontialHiIC Frisctybroun
SoeTick 1TCont ig¢ENABLEYS 300 ;
SysTick_CounterCmd(SysTick Counter_Enahle); gﬁgﬁfziﬁsEzgg{;g;lzsugow NvIc_priorityGroupcontig
7 Bustons port inis . DS00EFCA 4876 RO, [PC, #0x10E
14 enable clock and release al 3l
R PRz PomipnRosettndd . R APB2Perivh_GPIOR Siabeon Sanr L atus R0,
i RCC_APB2Periph GPIOG, DISABLEY; 0B00BFD2  FOOIFBIA BL Siritk rrcantig
RCC_APB2PeriphClockCnd< RCC_APB2Periph GPIOR SyTick Countercud (SysTick Counter EnaglZ);
0S00BFOE 2001 70, #0x1
! RCC_APB2Periph_GPIOG, ENABLED; DBO0BFDS  FODIFAEE Tick_Countercmd
; s labacascnil ot BRI B8
5 GPIO InitStructure.GPIO Pin = BL MASK;
26 GPIO_InitStructure.GPIO Mode = GPIO_Mode IN_FLOATIN! L o Ao
2?7 GPIO_InitStructure.GPIO Speed = GPIO_Speed SBMHz; JEOREFDE Faaf7hez MO Rz A0RiRR i prmesercma
GPIO_Init(Bi_PORT, &GPIO_InitStructured; RCC_APB2PeriphClockomd( RCC aPB2PerTph GPIOA
GPIO_InitStructure.GPIO Pin = B2 MASK; | RCC_APB2PErph_GPIOG, ENABLE):
GEIO_InitStructure . GPIO ode - GPIO Hode [N FLORTING: GB00EFEE 2101 WOVS AT
GPIO_InitStructure.GPI0 Speed = GPIO_Speed_SBMHz QBODEFES F4d4F7OEz MOV RO, #0x104
GPI0_Init<B2_PORT. &GPIO_InitStructure); 0BODBFEC  F7FFFA20 ) RCC_APB2Per1 phcl ockama
GPIO_Initstructure.GPIO Pin = Bl WASK:
EXT_CRT_SECTIONC); 0Z00BFFD  F44F7080 RO, #0x100
STl b e, T e = o L o 0w
~ AN_IR port and ADC in 0Z00BFFE 2004 T #0xq
” Enahle ADC1 and GPIOC ‘1 ck N N 0800BFFA  FE300003 RO, [SP, #0x3]
RCC_APB2PeriphResetCnd(RCC_APBZPeriph ADCL i RCC_APB2Periph_GPIOC. DISABLED; SPID Tnitstructure.cale SDM = apid fpeidoamia
1o B2 RCC_APB2PerinhClockCnd<RCC_APB2Perinh ADCL i RCC_APBZPerivh GPIOC. ENABLE)} J_I SRS J_I
o
= x[2 v |
Index | Frame | Address [opcode [ Trace [ Comment [
002368 002686 0X0B00BS A4 B510 REC, GEtF]agStatus(uE)
o02403 o02721 OXOB00BEBE 2800 Clk_TInit() +
o0z407 0o0z7zs Ox0E00BE A4 EEL1D RCC,GEtF]EQStatus(uej
002442 002760 0X0B800BEBE 2800 CIk_INiE() + 86
002446 002764 OX0B00BS Ad BS10 RCC_GetFlagstatus(us)
o0z4s1 00z73e Ox0E00BEEE 2800 CTE_INit() + &6
002485 002803 0X0B00BS A4 B510 RCC_GerFlagstatus (us)
o02520 002838 OXOB00BEBE 2800 CI_Inite) + 66
o0zszd 002842 Ox0E00BE A4 EEL1D = GEtF]EQStatus(uej
002559 002877 0X0B800BEBE 2800 Clk_Init() +
002563 002881 OX0B00BS Ad BS10 RCC. GE(F'IagS(a(us(qu
o028 00z3le Ox0E00BEEE 2800 CTE_Init() +
002602 002920 0X0B00BS A4 B510 REC, GEtF]agStatus(uE)
002627 002955 OXOB00BEBE 2800 Clk_TInit() +
o0zEdl 002353 Ox0E00BE A4 EEL1D = GEtF]EQStatus(uej
002676 002994 0X0B800BEBE 2800 Clk_Init() +
a02680 002998 OX0B00BS Ad BS10 R:c,aetnagsmmscusj
o0z71E 003032 Ox0E00BEEE 2800 CTE_INit() + &6
002719 003037 0X0B00BS A4 B510 REC, GEtF]agStatus(uE)
oD2754 003072 OXOB00BEBE 2800 Clk_TInit() +
o0zZ7ES 00307 Ox0E00BE A4 EEL1D RCC,GEtF]EQStatus(uej
002793 003111 0X0B800BEBE 2800 CIk_INiE() + 86
an2797 003115 OX0B00BS Ad BS10 RCC_GetFlagstatus(us)
o0zE3z 003180 Ox0E00BEEE 2800 CTE_INit() + &6
002836 003154 0X0B00BS A4 B510 RCC_GerFlagstatus (us)
002571 003189 OXOB00BEBE 2800 CI_Inite) + 66
o0zETE 003132 Ox0E00BICE EEL1D RCC_USECLKConfig(u3z)
002883 003201 0X0B00BECE Fa4aF CIk_INiE() + 76
o02885 003203 0XD800B3EC B510 RCC_ADCCLKCONTigu3z)
o0z206 0o03zzd 0x0800BEDD 2000 CTE_Init() + &4
002908 003226 0X0800B37C B510 REC, FCLKZCGH‘F'\ grusz)
002923 003241 OXOB00BEDG FaaF Clk_Tnit() +
o0zezE 003z42 Ox0800B324 EEL1D RCC_ PCLKlCUHﬁ a(uiz)
002942 003260 0X0B800BEDE 2000 Clk_Init() +
aD2944 003262 OX0B00B2E4 BS10 R:(,H(chnnﬁg(uzzj
o0z3E3 003z77 Ox0E00BEEY 2002 Cl_Init() + 104
002961 003279 0X0800070C B510 FLASH_SetLatency(u3z)
o02985 003203 OXDBONBEEA 2000 Clk_Inite) + 110
o0zaE7 003208 Ox08000746 EEL1D FLASH_Hal foycleAccessCmd(u3z)
003009 003327 OX0B00BEFO 2010 CIk_INiE() + 116
a03011 003329 0x0800077C BS10 FLASH_PrefetchButfercmd(uzz)
002031 003243 Ox0E00BEFE 2002 Clk_Init() + 122
003033 003351 0X0B00B2AC B510 REC_SYSCLKConTig(u3z)
003083 003371 OXOBO0BEFC BOOL Clk_Inite) + 128
003084 003372 Ox0E00BFES 2100 mainf) + 1
003057 003375 0X0800D88C B538 NYIC_servectorTable(u3z, u3z)
G03075 003353 Faar maing) + 2
o0z2077 003338 Ox0E000E4C EEL1D NYIC_FriorityGroupconfiguzz)
003056 003414 DXDBODBFCA 4876 maing) + 34

IAR J-Link and IAR }J-Trace

128 User Guide

J-Link_J-TraceARM-5




ZZ1AR Embedded Workbench IDE

Fle Edt View Project Debug Disassembly J-nk Tools Window Help

Background information

[-[Ox]

I IEIRPEEIEE

Y W=

B &0 [EE TR S b ob|

CeZaLELTX

main.c | gled_| Tx
74 SCB-OHFSR - OxFFFFFFFF; Golo | |Memory | [E]
SCB->DFSR = OxFFFFFFFF} ext_eer =
> 0600DSE42 4770 B LR
OMAZ_Channell_IRQHandler: _|
* Punction Name : NUIC PriorityGroupConfig o2 Channel 1 TraHandTer:
* Description  : Configures the pricrity grouping: pre-emption priority L text _e7:
* and subpriority. 05000844 4770 Bx i
* Input : — NUIC PriorityGroup: specifies the priority grouping bits b
* length. This parameter one of the Following values: M2 _Channel2_IRQHandler:
* = NUIC_PriorityGroup bits for pre-emption priority Piaz_channelz_tRQHandler:
* 4 bits for subpriority -
* - NUIC PriorityGroup. bhits for pre—emption priority Ristese 70 b "
* 3 bits for subpriority oma2_channel3_Irguandler:
* - NUIC_ PriorityGroup 2: 2 hits for pre-emption priority orins Chanmel 3 TRGHaNdTor
* 2 bhits for subpriority | text_ss:
* - NUIC PriorityGroup 3: 3 bits for pre-emption priority 080DDBAE 4770 Bx LR
* hits for subpriority
* T Beioritutrnan 4574 bits for pre-emption preiority 02 _Channe]4_5_TRQHand]er:
e B bits for subpriority omaz_Channel4_s_IRQHandler:
b Quiput i None Sabamesa 4770 Bx ®
* :
Return Mone 0id NuTC PriorityGroupconfio(uzz MVIC PriorityGrouni
E2 goid NUIC PriorityGroupConfisudz NUIC PriorityGroup) T —
NVIC_Priari tyGroupcontig:
/% Check the parameters e e A g
esem waranclS HUTC PRIONITY_GROUPCNUIC_PriorityGroup>s e PusH frate)
o1 ssoopss= 009
B2 /% Set the PRIGROUPL1® ts according to NUIC PriorityGroup value %/ aoert Garan(ls vic mouw GRDUP[N\IIC _EriorityGroup);
83 SCDSSAIRCR = ATRR. UBCTIEY NRSK 1 NOIG riariteGrovns SED0nEn FRBacFE )
94> 08000854 DOOE qu vvwx: pmnm(ycmup:nnﬁg,n
a5 0800DE5E  FEB4EFCO  CMF R4, €00
a6 0800D85A  DOOG BEQ PPNVIC_Priori tyGroupcontia_o
87 % Fanction Name t NUIG Inat 0500DSSC  F5BAEFAD  CHP Ré, #0X500
98 « Description  : Initializes the NUIC peripheral according to the specified ENDED DS ren od A erinaraupcontia t
parancters in the NUIC InitSt 05000866 DDO2 BEQ 27RvIC_Priori tyGroupcontig_o
m* Input O Thieitruct: posnter to s NIIC_InitTypeDef structure Becbeit Prdirree i e pom -
that contains the configuration information for the 0800086C 3 27TRVIC_Priori EyGroupcontia_t
o specified NUIC peripheral. 2nvTC pmumcyﬁmupcnnﬁg o:
13 * Qutput = None 0E00DEEE 004 TTNVIC_FriorityGroupconfig_z
14 % Return : None PPHLIC Pt oP T TyGroupContT g 1
15 08000870 211 RL, #0x64
16 void NUIC_Init<NUIC_InitTypeDefx NUIC_InitStruct> GeniDeze Fatfoosc LoRow RO, [PC, #0x5C]
DBDDDE?E F7FEFCAE assert_Tailed
omitu o _ = @xBe: CE_» AIRCR = ATRCR VECTKEY Mask | NWIC Friori coroup:
18 w32 tmppeiority = 6x00, 0xB0, tnpnask = 0x00; ,_,WIC S e
u, nppre . tmpsul oo87A  F8 RO, [PC, #0x58]
DenobE7E Ga0n o Ro, [RO
21 % Check the parameters %/ SRRRREIT eERd = B Ieal J—I
[eol [ |
Xa vy e

Index | Frame | Address [ opcode [Trace [ Comment
002368 002686 OxDSO0BSA+  B51D RCC_GETF1agSTAtLs (UB)

002403 002721 OxDSO0BEBE 2800 Clk_Init() + 66

002407 D0Z7IE  OxDEQ0BEAY4  B510 RCC_GetFlagstatus (us)

002442 002760 OXDSODBEBE 2800 Clk_Tnit() + &6

002446  D0Z764  0xDS00BSA+  BS1D RCC_GETF]agstatus (us)
002481 002783 OxDEQ0BEBE 2800 Clk_Initl) + &6

002485 002803 OxDEODBSA  B5S1D RCC_GETF1agSTatys (us)
002520 002838 0xDSOOBEBE 2800 Clk_Init() + 66

002524 002842  OxDEQ0BEAY4  B5L0 RCC_GetFlagstatus (us)
002559 002877  OXDSODBEBE 2800 Clk_Tnit() + &6

D02563  D0ZBEL  0xDS00BSA+  B5S1D RCC_GETF]agstatus (us)
002538 002916  OxDEQ0BEBE 2800 Clk_Initl) + &6

002602 002920 OXDEODBSA  BS1D RCC_GETF1agSTatys (us)
002637 002955 OxDSO0BEBE 2800 Clk_Init() + 66

002641 D0Z9E3  OxDEQ0BEAY  BSL0 RCC_GetFlagstatus (us)
002676 002994  OXDSODBEBE 2800 Clk_Tnit() + &6

002680  D0Z998  0xDE00BSA+  B5S1D RCC_GETF]agstatus (us)

002715 002037  OxDEQ0BEBE 2800 Clk_Initl) + &6

002719 003037  OXDEODBSA  B51D RCC_GETF1agSTatys (us)
002754 003072 OxDSO0BEBE 2800 Clk_Init() + 66

002758 002076  OxDEQ0BEAY4  BS10 RCC_GetFlagstatus (us)

002793 003111 OXDSODBEBE 2800 Clk_Tnit() + &6

002797  DOZ115  0xDS00BSA+  B51D RCC_GETF]agstatus (us)

002832 00Z180  OxDEQ0BEBE 2800 Clk_Initl) + &6

002836 003154 OXDSO0BSA  B51D RCC_GETF1agSTatys (us)
002871 003189 OxDSO0BEBE 2800 Clk_Init() + 66

002875 DOP187  OxDEQ0BICE  BSLO RCC_USECLKCONTigluzz)

002883 003201 OXDSODBECE  FadF Clk_Tnit() + 76

002885 003203 0xDS00BIEC  B51D RCC_ADCCLKCONT gluz2)
002306 002224 OxDEQ0BEDD 2000 Clk_Initl) + &4

002308 003226 OXDEODB3PC  BS1D RCC, PCLKZ(nm‘lg(u}zj

002923 003241 0xDS00BEDG  Fa4F Clk_Tnit() +

002325 00Z24I  OxDEQ0BI34  B5LO Rcc,Pchcunﬁg[uzzJ

002942 003260 OXDSODBEDE 2000 Clk_Tnit() + s8

D02944  D03262  0xDE00BZE4  B51D RCC_HCLKCON i g(u32)

002355 002277 OxOS00BEE4 2002 Clk_Initl) + 104

002961 003275 OxDE00DFOC  B51D FLASH_SETLarency(u3z)

002985 003303 OxDSO0BEEA 2000 clk_Init() + 110

002387  DOP30E  OxDE00D74E  B5LD FLASH Han’Cyc]EA::esscmd[uZZ]
003009 003327 OXDSOOBEFD 2010 Clk_Tnit() + 11

003011 003329 0x0800D7FC  BS1D FLASH Prefetchauffarcmn(usz)
003031 002343 OxOS00BEFE 2002 Clk_Init() + 122

003033 003351 OxDE0DBZAC  B51D RCC_SYSCLKCONTI g(uz2)

003053 003371 0xDSO0BEFC  BOOL clk_Init() + 128

003054 00P37z  OxDEQ0BFEE 2100 main() + 18

003057 003375 Ox0S00DEEC  B538 NVIC_SetvectorTable(uiz, u3z)
003075 003393 0xDS0DBFC2 FasF main() + 26

[iliE g [LEEEH [ELELLTEE EELY REC B OF T BT oUpEaR T GTLEYY
003056 003414 OXDEOOBFCA 4876 main() + 34

ETM Trace ETM Function Trace

The =

J-Link_J-TraceARM-5

—e

129



Embedded Trace Buffer (ETB)

The ETB is a small, circular on-chip memory area where trace information is stored during capture. It contains the data
which is normally exported immediately after it has been captured from the ETM. The buffer can be read out through
the JTAG port of the device once capture has been completed. No additional special trace port is required, so that the
ETB can be read via J-Link. The trace functionality via J-Link is limited by the size of the ETB. While capturing runs,
the trace information in the buffer will be overwritten every time the buffer size has been reached.

3, J-Link ARM M=

SEGGER J-Link Commander U3.72c ('7’ for help>

Compiled Jul 4 2887 28:17:14

DLL version U3.72c. compiled Jul 4 2887 28:17:89
Firmuare : ggL%Ek compiled Jun 14 2887 14:36:33 ARM Rev.5

: RDI. FlashBP. FlashDL. JFlash. GDB
19V

kH=
: CP15.8.8: Bx41869264: ARM. Architecure STEJ
= CP15.8.1: Bx1D192192: ICache: 32kB (4=256%32>, DCache: 32kB (4=256%32)>
Found 2 JTAG devices, Total IRLen = 8:
Id of device H#8: Bx1B?BAFAF
Id of device #1: Bx1798@FAF
Found ARM with core Id Bx1798BFBF (ARM?>
ETH U1.3: & pairs addr.comp,. 8 data comp, 16 MM decs,. 4 counters. sequencer
ETB U1.8: 2848x24 bit RAM
J-Link>eth

(ETBIBxBB1> : 1B?BAFAF

(ETBI[Bx61 1> : AAABAERA

(ETBIBxB21> : 0006618

(ETBIBxB3 1> : 00000668

(ETB[BxB41> : BACEBB1B?
RAM read pointer <(ETBI[BxB51> : BBEBAOBA
RAM write pointer (ETEBI[BxB61> : BBEBAOBA
Trigger counter (ETBL[BxB71> : BBEBAOBA
Control (ETBLBxB81> : BA0OOOOA
J-Link>

The result of the limited buffer size is that not more data can be traced than the buffer can hold. Through this limitation
is an ETB not in every case an fully-fledged alternative to the direct access to an ETM via J-Trace.

Flash programming

J-Link / J-Trace comes with a DLL, which allows - amongst other functionalities - reading and writing RAM, CPU
registers, starting and stopping the CPU, and setting breakpoints. The standard DLL does not have API functions for
flash programming. However, the functionality offered can be used to program the flash. In that case, a flashloader is
required.

HOW DOES FLASH PROGRAMMING VIA J-LINK / }-TRACE WORK?

This requires extra code. This extra code typically downloads a program into the RAM of the target system, which is
able to erase and program the flash. This program is called RAM code and "knows" how to program the flash; it
contains an implementation of the flash programming algorithm for the particular flash. Different flash chips have
different programming algorithms; the programming algorithm also depends on other things such as endianess of the
target system and organization of the flash memory (for example 1 * 8 bits, 1 * 16 bits, 2 * 16 bits or 32 bits). The
RAM code requires data to be programmed into the flash memory. There are 2 ways of supplying this data: Data
download to RAM or data download via DCC.

DATA DOWNLOAD TO RAM

The data (or part of it) is downloaded to an other part of the RAM of the target system. The Instruction pointer (R15)
of the CPU is then set to the start address of the Ram code, the CPU is started, executing the RAM code. The RAM
code, which contains the programming algorithm for the flash chip, copies the data into the flash chip. The CPU is
stopped after this. This process may have to be repeated until the entire data is programmed into the flash.

IAR J-Link and IAR }J-Trace
130 User Guide J-Link_J-TraceARM-5



Background information —e

DATA DOWNLOAD VIA DCC

In this case, the RAM code is started as described above before downloading any data. The RAM code then
communicates with the host computer (via DCC, JTAG and J-Link / J-Trace), transferring data to the target. The RAM
code then programs the data into flash and waits for new data from the host. The WriteMemory functions of J-Link /
J-Trace are used to transfer the RAM code only, but not to transfer the data. The CPU is started and stopped only once.
Using DCC for communication is typically faster than using WriteMemory for RAM download because the overhead
is lower.

AVAILABLE OPTIONS FOR FLASH PROGRAMMING

There are different solutions available to program internal or external flashes connected to ARM cores using J-Link /
J-Trace. The different solutions have different fields of application, but of course also some overlap.

Flash loader of compiler / debugger vendor such as IAR

IAR Embedded Workbench comes with its own flash loaders. The flash loaders can of course be used if they match
your flash configuration, which is something that needs to be checked with the vendor of the debugger.

J-Link / J-Trace firmware

The heart of J-Link / J-Trace is a microcontroller. The firmware is the software executed by the microcontroller inside
of the J-Link / J-Trace. The J-Link / J-Trace firmware sometimes needs to be updated. This firmware update is
performed automatically as necessary by the JLink ARM.dII.

FIRMWARE UPDATE

Every time you connect to J-Link / J-Trace, JLinkARM.dII checks if its embedded firmware is newer than the one used
the J-Link / J-Trace. The DLL will then update the firmware automatically. This process takes less than 3 seconds and
does not require a reboot.

It is recommended that you always use the latest version of JLink ARM.dII.

- ' for help.
k compiled Oct 20 2005 14 41 : 31 ARM Rew.

Compiled 14:02:49 on Oct 25 206G5 .
Upd i J-Li

UTarget - O.00OU
Speed set to 38 kH=
J-Link>

In the screenshot:

e The red box identifies the new firmware.

e The green box identifies the old firmware which has been replaced.

INVALIDATING THE FIRMWARE

Downdating J-Link / J-Trace is not performed automatically through an old JLinkARM.dIl.  J-Link / J-Trace will
continue using its current, newer firmware when using older versions of the JLink ARM.dII.

Note:Downdating J-Link / J-Trace is not recommended, you do it at your own risk!

Note:Note also the firmware embedded in older versions of JLink ARM.dIl might not execute properly with newer
hardware versions.

J-Link_J-TraceARM-5 131



To downdate J-Link / J-Trace, you need to invalidate the current J-Link / J-Trace firmware, using the command exec

InvalidateFW.
[#%] ink.exe =]

SEGGER J-Link Commander U2_.74_81. 7' for help.

Compiled 18:17:23 on Mov 25 2885,

DLL version U2_.74bh, compiled Hou 25 2085 18:17:-13

Firmware: J-Link compiled Mov 17 2085 i6:12:19 ARH Rev.§

Hardware : US .00

SN =

UTarget = @.808l)

Speed set to 38 kH=

J-Link>exec invalidatefuw

Info: Updating firmware: J-Link compiled NHOU 17 2885 16:12:19 ARH Rev. 5

Info: Replacing firmuware: J-Link compiled Mov 17 2885 16:12:1%9 ARH Rev. 5

Info: ..- Firmuware update successful. CRC=CDI3
Info: Waiting for new firmuware to boot

J-Link?>

In the screenshot, the red box contains information about the formerly used J-Link / J-Trace firmware version.

Use an application (for example JLink . exe) which uses the desired version of JLink ARM.dIl. This automatically
replaces the invalidated firmware with its embedded firmware.

JLink.exe =l

SEGGER J-Link Commander U2_68._.81. 7' for help.

Compiled 14:82:4% on Oct 25 2805.

Updating firmware: J-Link compiled Oct 20 2805 14:41:31 ARM Rev.5
i firmuware: J-Link compiled NOU 17 2085 16:12:19 ARH Rev.5S
Firmuware update successful. CRC=5EF3

Waiting for new firmuware to boot

DLL version U2_.78a, compiled Oct 25 2085 14:-82:-48

Firmuware: J-Link compiled Oct 20 2085 14:-41:-31 ARM Rev .5

Hardware: US.00
SN =

UTarget = @.808l)
Speed set to 38 kH=
J—-Link>

In the screenshot:

e The red box identifies the new firmware.

e The green box identifies the old firmware which has been replaced.

IAR J-Link and IAR }J-Trace
132 User Guide J-Link_J-TraceARM-5



Designing the target board for trace

This chapter describes the hardware requirements which have to be met by the target board.

Overview of high-speed board design

Failure to observe high-speed design rules when designing a target system containing an ARM Embedded Trace
Macrocell (ETM) trace port can result in incorrect data being captured by J-Trace. You must give serious consideration
to high-speed signals when designing the target system.

The signals coming from an ARM ETM trace port can have very fast rise and fall times, even at relatively low
frequencies.

Note:These principles apply to all of the trace port signals (TRACEPKT[0:15], PIPESTAT[0:2], TRACESYNC), but
special care must be taken with TRACECLK.

AVOIDING STUBS

Stubs are short pieces of track that tee off from the main track carrying the signal to, for example, a test point or a
connection to an intermediate device. Stubs cause impedance discontinuities that affect signal quality and must be
avoided.

Special care must therefore be taken when ETM signals are multiplexed with other pin functions and where the PCB
is designed to support both functions with differing tracking requirements.

MINIMIZING SIGNAL SKEW (BALANCING PCB TRACK LENGTHS)

You must attempt to match the lengths of the PCB tracks carrying all of TRACECLK, PIPESTAT, TRACESYNC, and
TRACEPKT from the ASIC to the mictor connector to within approximately 0.5 inches (12.5mm) of each other. Any
greater differences directly impact the setup and hold time requirements.

MINIMIZING CROSSTALK

Normal high-speed design rules must be observed. For example, do not run dynamic signals parallel to each other for
any significant distance, keep them spaced well apart, and use a ground plane and so forth. Particular attention must be
paid to the TRACECLK signal. If in any doubt, place grounds or static signals between the TRACECLK and any other
dynamic signals.

USING IMPEDANCE MATCHING AND TERMINATION

Termination is almost certainly necessary, but there are some circumstances where it is not required. The decision is
related to track length between the ASIC and the JTAG+Trace connector, see Terminating the trace signal on page 133
for further reference.

Terminating the trace signal

To terminate the trace signal, you can choose between three termination options:

e Matched impedance
e Series (source) termination

e DC parallel termination.

J-Link_J-TraceARM-5 133



Matched impedance

Where available, the best termination scheme is to have the ASIC manufacturer match the output impedance of the
driver to the impedance of the PCB track on your board. This produces the best possible signal.

Series (source) termination

This method requires a resistor fitted in series with signal. The resistor value plus the output impedance of the driver
must be equal to the PCB track impedance.

DC parallel termination

This requires either a single resistor to ground, or a pull-up/pull-down combination of resistors (Thevenin termination),
fitted at the end of each signal and as close as possible to the JTAG+Trace connector. If a single resistor is used, its
value must be set equal to the PCB track impedance. If the pull-up/pull-down combination is used, their resistance
values must be selected so that their parallel combination equals the PCB track impedance.

Caution:

At lower frequencies, parallel termination requires considerably more drive capability from the ASIC than series
termination and so, in practice, DC parallel termination is rarely used.

RULES FOR SERIES TERMINATORS

Series (source) termination is the most commonly used method. The basic rules are:
I The series resistor must be placed as close as possible to the ASIC pin (less than 0.5 inches).

2 The value of the resistor must equal the impedance of the track minus the output impedance of the output driver. So
for example, a 50 PCB track driven by an output with a 17 impedance, requires a resistor value of 33.

3 A source terminated signal is only valid at the end of the signal path. At any point between the source and the end of
the track, the signal appears distorted because of reflections. Any device connected between the source and the end of
the signal path therefore sees the distorted signal and might not operate correctly. Care must be taken not to connect
devices in this way, unless the distortion does not affect device operation.

Signal requirements

The table below lists the specifications that apply to the signals as seen at the JTAG+Trace connector.

Signal Value
Fmax 200MHz
Ts setup time (min.) 2.0ns
Th hold time (min.) |.Ons
TRACECLK high pulse width (min.) |.5ns
TRACECLK high pulse width (min.) |.5ns

Table 1: Signal requirements

IAR J-Link and IAR }J-Trace
134 User Guide J-Link_J-TraceARM-5



Support and FAQs

This chapter contains troubleshooting tips together with solutions for common problems which might occur
when using J-Link / J-Trace. There are several steps you can take before contacting support. Performing these
steps can solve many problems and often eliminates the need for assistance. This chapter also contains a collection

of frequently asked questions (FAQs) with answers.

Measuring download speed
TEST ENVIRONMENT

JLink.exe has been used for measurement performance. The hardware consisted of:

e PC with 2.6 GHz Pentium 4, running Win2K
USB 2.0 port

USB 2.0 hub

J-Link

[
[ ]
[ ]
e Target with ARM7 running at S0MHz.

Below is a screenshot of JLink. exe after the measurement has been performed.

‘Program Files\SEGGER" JLinkARM_%¥386" JLink.exe

SEGGER J-Link Commander U3.86 {'7?" for help)>
Compiled Jun 27 2888 19:42:43
DLL version U3 .86, compiled Jun 27 2008 19:42:28
Firmware: J-Link ARM U6 compiled Jun 27 Z2HH@8 18:35:51
Harduware: U6.08
S = 1
UTarget = 3_.274U
JTAG speed: 5 kH=z
: TotallRLen = 4. IRPrint = BxB81

Found 1 JTAG device, Total IRLen = 4:

Id of device HW: Hx3FAFAFAF
Found ARM with core Id Bx3IFBFBFAF (ARM?>

J-Link>speed 12008

JTAG speed: 120HHA kH=

J-Link>testuwspeed

Speed test: Writing 8 = 128kb into memory @ address BxBEBB0AEE
128 kByte written in 185ms t* (7B6.6 kh-/zec)

J—Link>

Troubleshooting
GENERAL PROCEDURE

If you experience problems with J-Link / J-Trace, you should follow the steps below to solve these problems:

I Close all running applications on your host system.
Disconnect the J-Link / J-Trace device from USB.

Disable power supply on the target.

H W N

Re-connect J-Link / J-Trace with the host system (attach USB cable).

J-Link_J-TraceARM-5

135



5 Enable power supply on the target.

6 Try your target application again. If the problem remains continue the following procedure.
7 Close all running applications on your host system again.

8 Disconnect the J-Link / J-Trace device from USB.

9 Disable power supply on the target.

10 Re-connect J-Link / J-Trace with the host system (attach the USB cable).

I 1 Enable power supply on the target.

12 Start JLink. exe.

13 If JLink . exe displays the J-Link / J-Trace serial number and the target processor’s core ID, the J-Link / J-Trace is
working properly and cannot be the cause of your problem.

14 If JLink. exe is unable to read the target processor’s core ID you should analyze the communication between your
target and J-Link / J-Trace with a logic analyzer or oscilloscope. Follow the instructions in section .

TYPICAL PROBLEM SCENARIOS

J-Link / J-Trace LED is off
Meaning:

The USB connection does not work.
Remedy:

Check the USB connection. Try to re-initialize J-Link / J-Trace by disconnecting and reconnecting it. Make sure that
the connectors are firmly attached. Check the cable connections on your J-Link / J-Trace and the host computer. If this
does not solve the problem, check if your cable is defect. If the USB cable is ok, try a different host computer.

J-Link / J-Trace LED is flashing at a high frequency
Meaning:

J-Link / J-Trace could not be enumerated by the USB controller.

Most likely reasons:

a.) Another program is already using J-Link / J-Trace.
b.) The J-Link USB driver does not work correctly.

Remedy:

a.) Close all running applications and try to reinitialize J-Link / J-Trace by disconnecting and reconnecting it.
b.) If the LED blinks permanently, check the correct installation of the J-Link USB driver. Deinstall and reinstall the
driver as shown in chapter Sefup on page 41.

J-Link/J-Trace does not get any connection to the target

Most likely reasons:

a.) The JTAG cable is defective.
b.) The target hardware is defective.

Remedy:

Follow the steps described in General procedure on page 135.

Signal analysis
The following screenshots show the data flow of the startup and ID communication between J-Link / J-Trace and the
target device.

IAR J-Link and IAR }J-Trace
136 User Guide J-Link_J-TraceARM-5



Support and FAQs —e

START SEQUENCE

This is the signal sequence output by J-Link / J-Trace at start of JLink . exe. It should be used as reference when tracing
potential J-Link / J-Trace related hardware problems.

200 us 0s 200 us 400 us 600 us 800 us 1ms 12ms 14ms 16 ms 18ms 2ms 22 ms 24ms 28 ms 28 ms
Bus/Signal ;

I A R R R B N S B N B A R A S S A R R A R A S A SR R AR B

Time

Dﬂeaet
[rrsT
[rek
[(ms

o

oo

The sequence consists of the following sections:

5 clocks: TDI low, TMS high. Brings TAP controller into RESET state

1 clock: TDI low, TMS low: Brings TAP controller into IDLE state

2 clocks: TDI low, TMS high: Brings TAP controller into IR-SCAN state

2 clocks: TDI low, TMS low: Brings TAP controller into SHIFT-IR state

32 clocks: TMS low, TDI: 0x05253000 (Isb first): J-Link Signature as IR data
240 clocks: TMS low, last clock high, TDI high: Bypass command

1 clock: TDI low, TMS high: Brings TAP controller into UPDATE-IR state.

J-Link / J-Trace checks the output of the device (output on TDO) for the signature to measure the IR length. For ARM7
/ ARMDO chips, the IR length is 4, which means TDO shifts out the data shifted in on TDI with 4 clock cycles delay. If
you compare the screenshot with your own measurements, the signals of TCK, TMS, TDI, and TDO should be
identical.

Note that the TDO signal is undefined for the first 10 clocks, since the output is usually tristated and the signal level
depends on external components connected to TDO, such as pull-up or pull-down.

Zoom-in

The next screenshot shows the first 6 clock cycles of the screenshot above. For the first 5 clock cycles, TMS is high
(Resulting in a TAP reset). TMS changes to low with the falling edge of TCK. At this time the TDI signal is low. Your
signals should be identical. Signal rise and fall times should be shorter than 100ns.

Bus/Signal

i -20 us 219 ug
(L R T R T T T T T T L T

0Tk

[Tns

(ol

[roo

TROUBLESHOOTING

If your measurements of TCK, TMS and TDI (the signals output by J-Link / J-Trace) differ from the results shown,
disconnect your target hardware and test the output of TCK, TMS and TDI without a connection to a target, just
supplying voltage to J-Link’s/J-Trace’s JTAG connector: VCC at pin 1; GND at pin 4.

Contacting support

Before contacting support, make sure you tried to solve your problem by following the steps outlined in section General
procedure on page 135. You may also try your J-Link / J-Trace with another PC and if possible with another target
system to see if it works there. If the device functions correctly, the USB setup on the original machine or your target
hardware is the source of the problem, not J-Link / J-Trace.

J-Link_J-TraceARM-5 137



If you need to contact support, send the following information to
support@iar.com:

e A detailed description of the problem

e J-Link/J-Trace serial number

e Output of JLink.exe if available
e Your findings of the signal analysis
[ ]

Information about your target hardware (processor, board, etc.).

Frequently Asked Questions

Supported CPUs

Q: Which CPUs are supported?
A: J-Link / J-Trace should work with any ARM7/9 and Cortex-M3 core. For a list of supported cores, see sec-
tion Supported CPU cores on page 21.

Read status of JTAG pins

Q: Can J-Link / J-Trace read back the status of the JTAG pins?
A: Yes, the status of all pins can be read. This includes the outputs of J-Link / J-Trace as well as the supply
voltage, which can be useful to detect hardware problems on the target system.

J-Link support of ETM

Q: Does J-Link support the Embedded Trace Macrocell (ETM)?
A: No. ETM requires another connection to the ARM chip and a CPU with built-in ETM. Most current
ARM?7 / ARMO chips do not have ETM built-in.

J-Link support of ETB

Q: Does J-Link support the Embedded Trace Buffer (ETB)?
A: Yes. J-Link supports ETB. Most current ARM7 / ARM9 chips do not have ETB built-in.

Registers on ARM 7 / ARM 9 targets

Q: I’m running J-Link.exe in parallel to my debugger, on an ARM 7 target. I can read memory okay, but the
processor registers are different. Is this normal?
A: If memory on an ARM 7/9 target is read or written the processor registers are modified. When memory

read or write operations are performed, J-Link preserves the register values before they are modified. The
register values shown in the debugger’s register window are the preserved ones. If now a second instance,
in this case J-Link.exe, reads the processor registers, it reads the values from the hardware, which are
the modified ones. This is why it shows different register values.

IAR J-Link and IAR }J-Trace
138 User Guide J-Link_J-TraceARM-5



Glossary

This chapter describes important terms used throughout this manual.

Adaptive clocking

A technique in which a clock signal is sent out by J-Link / J-Trace. J-Link / J-Trace waits for the returned clock before generating the next
clock pulse. The technique allows the J-Link / J-Trace interface unit to adapt to differing signal drive capabilities and differing cable lengths.

Application Program Interface

A specification of a set of procedures, functions, data structures, and constants that are used to interface two or more software components
together.

Big-endian

Memory organization where the least significant byte of a word is at a higher address than the most significant byte. See Little-endian.
Cache cleaning

The process of writing dirty data in a cache to main memory.
Coprocessor

An additional processor that is used for certain operations, for example, for floating-point math calculations, signal processing, or memory
management.

Dirty data

When referring to a processor data cache, data that has been written to the cache but has not been written to main memory is referred to as
dirty data. Only write-back caches can have dirty data because a write-through cache writes data to the cache and to main memory
simultaneously. See also cache cleaning.

Dynamic Linked Library (DLL)

A collection of programs, any of which can be called when needed by an executing program. A small program that helps a larger program
communicate with a device such as a printer or keyboard is often packaged as a DLL.

Embedded Trace Macrocell (ETM)
ETM is additional hardware provided by debuggable ARM processors to aid debugging with trace functionality.

Embedded Trace Buffer (ETB)

ETB is a small, circular on-chip memory area where trace information is stored during capture.
EmbeddedICE

The additional hardware provided by debuggable ARM processors to aid debugging.
Halfword

A 16-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.

Host

A computer which provides data and other services to another computer. Especially, a computer providing debugging services to a target
being debugged.

ICache
Instruction cache.
ICE Extension Unit
A hardware extension to the EmbeddedICE logic that provides more breakpoint units.

ID

Identifier.

J-Link_J-TraceARM-5 139



IEEE 1149.1

The IEEE Standard which defines TAP. Commonly (but incorrectly) referred to as JTAG.
Image

An executable file that has been loaded onto a processor for execution.
In-Circuit Emulator (ICE)

A device enabling access to and modification of the signals of a circuit while that circuit is operating.
Instruction Register

When referring to a TAP controller, a register that controls the operation of the TAP.
IR

See Instruction Register.
Joint Test Action Group (JTAG)

The name of the standards group which created the IEEE 1149.1 specification.
Little-endian

Memory organization where the least significant byte of a word is at a lower address than the most significant byte. See also Big-
endian.

Memory coherency

A memory is coherent if the value read by a data read or instruction fetch is the value that was most recently written to that location.
Obtaining memory coherency is difficult when there are multiple possible physical locations that are involved, such as a system that
has main memory, a write buffer, and a cache.

Memory management unit (MMU)
Hardware that controls caches and access permissions to blocks of memory, and translates virtual to physical addresses.

Memory Protection Unit (MPU)

Hardware that controls access permissions to blocks of memory. Unlike an MMU, an MPU does not translate virtual addresses to
physical addresses.

Multi-ICE
Multi-processor EmbeddedICE interface. ARM registered trademark.

RESET

Abbreviation of System Reset. The electronic signal which causes the target system other than the TAP controller to be reset. This
signal is also known as "nSRST" "nSYSRST", "nRST", or "nRESET" in some other manuals. See also nTRST.

nTRST

Abbreviation of TAP Reset. The electronic signal that causes the target system TAP controller to be reset. This signal is known as
nICERST in some other manuals. See also nSRST.

Open collector

A signal that may be actively driven LOW by one or more drivers, and is otherwise passively pulled HIGH. Also known as a "wired
AND" signal.

Processor Core

The part of a microprocessor that reads instructions from memory and executes them, including the instruction fetch unit, arithmetic
and logic unit, and the register bank. It excludes optional coprocessors, caches, and the memory management unit.

Program Status Register (PSR)

Contains some information about the current program and some information about the current processor state. Often, therefore, also
referred to as Processor Status Register.

Also referred to as Current PSR (CPSR), to emphasize the distinction to the Saved PSR (SPSR). The SPSR holds the value the PSR
had when the current function was called, and which will be restored when control is returned.

IAR J-Link and IAR }J-Trace

140 User Guide J-Link_J-TraceARM-5



Glossary —e

Remapping

Changing the address of physical memory or devices after the application has started

executing. This is typically done to make RAM replace ROM once the initialization has been done.
Remote Debug Interface (RDI)

RDI is an open ARM standard procedural interface between a debugger and the debug agent. The widest possible adoption of this
standard is encouraged.

RTCK

Returned TCK. The signal which enables Adaptive Clocking.
RTOS

Real Time Operating System.
Scan Chain

A group of one or more registers from one or more TAP controllers connected between TDI and TDO, through which test data is
shifted.

Semihosting

A mechanism whereby the target communicates I/O requests made in the application code to the host system, rather than attempting
to support the I/O itself.

SwWi

Software Interrupt. An instruction that causes the processor to call a programer-specified subroutine. Used by ARM to handle
semihosting.

TAP Controller

Logic on a device which allows access to some or all of that device for test purposes. The circuit functionality is defined in
IEEE1149.1.

Target

The actual processor (real silicon or simulated) on which the application program is running.
TCK

The electronic clock signal which times data on the TAP data lines TMS, TDI, and TDO.

TDI

The electronic signal input to a TAP controller from the data source (upstream). Usually, this is seen connecting the J-Link / J-Trace
Interface Unit to the first TAP controller.

TDO

The electronic signal output from a TAP controller to the data sink (downstream). Usually, this is seen connecting the last TAP
controller to the J-Link / J-Trace Interface Unit.

Test Access Port (TAP)
The port used to access a device's TAP Controller. Comprises TCK, TMS, TDI, TDO, and nTRST (optional).
Transistor-transistor logic (TTL)

A type of logic design in which two bipolar transistors drive the logic output to one or zero. LSI and VLSI logic often used TTL
with HIGH logic level approaching +5V and LOW approaching OV.

Watchpoint
A location within the image that will be monitored and that will cause execution to stop when it changes.

Word

A 32-bit unit of information. Contents are taken as being an unsigned integer unless otherwise stated.

IX_Glossary-1 141



IAR J-Link and IAR }J-Trace

142 User Guide J-Link_J-TraceARM-5



Literature and references

This chapter lists documents, which we think may be useful to gain deeper understanding of technical details.

Reference Title Comments
[ETM] Embedded Trace Macrocell™ Architecture ~ This document defines the ETM standard, including
Specification, ARM IHI 0014) signal protocol and physical interface.
It is publicly available from ARM (www.arm.com).
[RvI1] RealView® ICE and RealView Trace User This document describes ARM’s realview ice emulator
Guide, ARM DUI 0155C and requirements on the target side.

It is publicly available from ARM (www.arm.com).

Table 1: Literature and References

J-Link_J-TraceARM-5 143



IAR J-Link and IAR }J-Trace
144 User Guide J-Link_J-TraceARM-5



Index

A

Adaptive clocking . ......... .o 139
Application Program Interface. ........................ 139
Big-endian ......... ... ... 139
Cachecleaning........... ..., 139
COProCeSSOT . ..o oottt ettt 139
COPYIght NOtICE . . . ..o vt 2
Dirtydata ... 139
disclaimer . .. ... ... ... 2
Dynamic Linked Library (DLL) ....................... 139
Embedded Trace Buffer (ETB) .................... 130, 139
Embedded Trace Macrocell (ETM) ................ 125, 139
EmbeddedICE ......... ... 00 i 139
Halfword....... ... .. .. . ... o 139
Host. .. ... 139
ICache. ... 139
ICEExtension Unit................ ... ..., 139
D . 139
IEEE 1149.1. . . 140
Image. ... 140
Instruction Register. . ................... .. ... ....... 140
In-Circuit Emulator............ ... ... ... .. .. 140
IR 140

Index

—e
Joint Test Action Group JTAG) ....................... 140
JTAG . .o 123

TAP controller. . ........... oo i 124
J-Flash ARM .. ... 36
J-Link

Adapters. . ..o 122

Supported chips ........ ... 85,91
J-Link Commander . ............. ... it 34
J-Link STR9 Commander ............................. 34
J-Mem Memory Viewer ... .. 36
Little-endian. . .......... ... 140
Memory coherency . ... 140
Memory management unit (MMU) ............. ... ... 140
Memory Protection Unit MPU)....................... 140
Multi-ICE . ... 140
nTRST. ... 113, 140
Opencollector . ...t 140
Processor Core. ... 140
Program Status Register (PSR) . ............. ... . ... 140
registered trademarks . ......... ... ... L. 2
Remapping....... ... .o i 141
Remote Debug Interface (RDI)........................ 141
RESET .. 140
RTCK ..o e 141
RTOS. . 141
ScanChain............... ... ... .. ... 141
Semihosting . .......... ... 141
SetDbgPowerDownOnClose . .......................... 79
SetSysPowerDownOnldle ............................. 80
SUppOrt . ..o 135, 139
Supported flash devices ......................... 85-87,92

145

J-Link_J-TraceARM-5



Tabs .. 59
TAP Controller. ..............oo i, 141
Target. . ..o 141
TCK . oo 113, 141
1 0) 113, 141
TDO. ..o 113, 141
Test Access Port (TAP). .......... .. ... 141
trademarks .......... ... ... 2
Transistor-transistor logic (TTL)....................... 141
Watchpoint . ........ .. 141
Word ... 141

IAR J-Link and IAR )-Trace
146  User Guide J-Link_J-TraceARM-5



	Preface
	About this guide
	Typographic conventions

	Literature and references

	Table of Contents
	Introduction
	Requirements
	Supported OS
	J-Link / J-Trace models
	Model comparison
	J-Link ARM
	J-Link Ultra
	J-Link ARM Lite
	J-Link Lite Cortex-M
	J-Trace ARM
	J-Trace for Cortex-M3

	Common features of the J-Link product family
	Supported CPU cores
	Built-in intelligence for supported CPU-cores
	Intelligence in the J-Link firmware
	Intelligence on the PC-side (DLL)
	Firmware intelligence per model


	Licensing
	Introduction
	Software components requiring a license
	License types
	Built-in license
	Key-based license
	Device-based license

	Legal use of SEGGER J-Link software
	Products
	J-Link
	J-Link Ultra
	J-Trace
	J-Trace for Cortex-M

	IAR J-Link Lite
	J-Link OBs
	Illegal Clones

	J-Link and J-Trace related software
	J-Link related software
	J-Link software and documentation package

	J-Link software and documentation package in detail
	J-Link Commander (Command line tool)
	J-Link STR91x Commander (Command line tool)
	J-Link STM32 Commander (Command line tool)
	J-Mem Memory Viewer
	J-Flash ARM (Program flash memory via JTAG)

	Using the J-LinkARM.dll
	What is the JLinkARM.dll?
	Updating the DLL
	Determining the version of JLinkARM.dll
	Determining which DLL is used by a program


	Setup
	Installing the J-Link ARM
	Setup procedure

	Setting up the USB interface
	Verifying correct driver installation
	Uninstalling the J-Link USB driver

	J-Link USB identification
	Connecting to different J-Links connected to the same host PC via USB


	Working with J-Link and J-Trace
	Connecting the target system
	Power-on sequence
	Verifying target device connection
	Problems

	Indicators
	Main indicator
	Input indicator
	Output indicator

	JTAG interface
	Multiple devices in the scan chain
	Configuration dialog boxes
	Determining values for scan chain configuration
	JTAG Speed

	SWD interface
	SWD speed
	SWO

	Multi-core debugging
	How multi-core debugging works
	Using multi-core debugging in detail
	Things you should be aware of

	Connecting multiple J-Links / J-Traces to your PC
	How does it work?

	J-Link control panel
	Tabs

	Reset strategies
	Strategies for ARM 7/9 devices
	Strategies for Cortex-M devices

	Using DCC for memory access
	What is required?
	Target DCC handler
	Target DCC abort handler

	J-Link script files
	Actions that can be customized
	Script file API functions
	Global DLL variables
	Global DLL constants
	Script file language
	Executing J-Link script files

	Command strings
	List of available commands
	Using command strings

	Switching off CPU clock during debug
	Cache handling
	Cache coherency
	Cache clean area
	Cache handling of ARM7 cores
	Cache handling of ARM9 cores


	Flash download
	Introduction
	Licensing
	Supported devices
	Setup
	IAR Embedded Workbench
	J-Link Commander

	Setup for CFI flash
	IAR Embedded Workbench
	J-Link commander

	Using the DLL flash loaders in custom applications

	Flash breakpoints
	Introduction
	Licensing
	24h flash breakpoint trial license

	Supported devices
	Setup
	Setup


	Device specifics
	Analog Devices
	ADuC7xxx

	ATMEL
	AT91SAM7
	AT91SAM9

	DSPGroup
	Ember
	Energy Micro
	Freescale
	Kinetis family
	Unlocking
	Tracing

	Fujitsu
	Itron
	Luminary Micro
	Unlocking LM3Sxxx devices

	NXP
	LPC ARM7-based devices
	Reset (Cortex-M3 based devices)

	OKI
	Renesas
	Samsung
	S3FN60D

	ST Microelectronics
	STR91x
	STM32F10x

	Texas Instruments
	Toshiba

	Target interfaces and adapters
	20-pin JTAG/SWD connector
	Pinout for JTAG
	Pinout for SWD

	38-pin Mictor JTAG and Trace connector
	Connecting the target board
	Pinout
	Assignment of trace information pins between ETM architecture versions
	Trace signals

	19-pin JTAG/SWD and Trace connector
	Target power supply

	9-pin JTAG/SWD connector
	Adapters

	Background information
	JTAG
	Test access port (TAP)
	Data registers
	Instruction register
	The TAP controller

	Embedded Trace Macrocell (ETM)
	Trigger condition
	Code tracing and data tracing
	J-Trace integration example - IAR Embedded Workbench for ARM

	Embedded Trace Buffer (ETB)
	Flash programming
	How does flash programming via J-Link / J-Trace work?
	Data download to RAM
	Data download via DCC
	Available options for flash programming

	J-Link / J-Trace firmware
	Firmware update
	Invalidating the firmware


	Designing the target board for trace
	Overview of high-speed board design
	Avoiding stubs
	Minimizing Signal Skew (Balancing PCB Track Lengths)
	Minimizing Crosstalk
	Using impedance matching and termination

	Terminating the trace signal
	Rules for series terminators

	Signal requirements

	Support and FAQs
	Measuring download speed
	Test environment

	Troubleshooting
	General procedure
	Typical problem scenarios

	Signal analysis
	Start sequence
	Troubleshooting

	Contacting support
	Frequently Asked Questions

	Glossary
	Literature and references
	Index
	A
	B
	C
	D
	E
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	W




